Abstract

A design challenge for photodiodes yielding both high speed and responsivity is the necessity to concentrate incident light into a subwavelength active volume region. Photonic nanojets have been reported in the literature as a means to focus an incident plane wave to a subwavelength-waist propagating beam with applications ranging from next-generation DVDs to characterizing subwavelength features within dielectric targets. In the present work, a new application of photonic nanojets is proposed, focusing electromagnetic energy into a photodiode. Three-dimensional finite-difference time-domain solutions are conducted to determine the advantages of photonic nanojet-enhanced photodiodes at near-infrared wavelengths (1310 nm). We find that photonic nanojets provide a factor of 26 increase in the volume-integrated electric field within the subwavelength active volume of the photodiode of size 0.0045μm3. Furthermore, this increase is achieved independent of the incident polarization and over a broad bandwidth. Photonic nanojets may thus serve as an attractive alternative to plasmonics for some applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).
  2. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
    [CrossRef]
  3. G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
    [CrossRef]
  4. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006).
    [CrossRef]
  5. L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009).
    [CrossRef]
  6. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef]
  7. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12, 1214–1220 (2004).
    [CrossRef]
  8. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13, 526–533 (2005).
    [CrossRef]
  9. S. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17, 3722–3731 (2009).
    [CrossRef]
  10. A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).
  11. S. Lecler, Y. Takakura, and P. Meyrueis, “Properties of a three-dimensional photonic jet,” Opt. Lett. 30, 2641–2643 (2005).
    [CrossRef]
  12. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, 2005).
  13. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, “Direct imaging of photonic nanojets,” Opt. Express 16, 6930–6940 (2008).
    [CrossRef]
  14. M. Kim, T. Scharf, S. Muhlig, C. Rockstuhl, and H. P. Herzig, “Engineering photonic nanojets,” Opt. Express 19, 10206–10220 (2011).
    [CrossRef]
  15. S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
    [CrossRef]
  16. C. Mendez-Ruiz and J. J. Simpson, “Detection of embedded ultra-subwavelength-thin dielectric features using elongated photonic nanojets,” Opt. Express 18, 16805–16812 (2010).
    [CrossRef]
  17. J. Liu, Photonic Devices (Cambridge University, 2005).
  18. L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” IEEE Photon. J. 1, 69–79 (2009).
    [CrossRef]
  19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  20. J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
    [CrossRef]
  21. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
    [CrossRef]

2011

2010

2009

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009).
[CrossRef]

S. Kong, A. Taflove, and V. Backman, “Quasi one-dimensional light beam generated by a graded-index microsphere,” Opt. Express 17, 3722–3731 (2009).
[CrossRef]

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” IEEE Photon. J. 1, 69–79 (2009).
[CrossRef]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34, 686–688 (2009).
[CrossRef]

2008

2006

2005

2004

2000

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

1998

Assanto, G.

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” IEEE Photon. J. 1, 69–79 (2009).
[CrossRef]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Backman, V.

Barnard, E. S.

Bonod, N.

Brongersma, M. L.

Chandran, A.

Chen, Z.

Colace, L.

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” IEEE Photon. J. 1, 69–79 (2009).
[CrossRef]

Devilez, A.

Djurisic, A. B.

Elazar, J. M.

Fan, S.

Ferrand, P.

Fischer, H.

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Gedney, S. D.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, 2005).

Heifetz, A.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).

Herzig, H. P.

Hesselink, L.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Kim, M.

Kocabas, S. E.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Kong, S.

Kong, S. C.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).

S. C. Kong, A. Sahakian, A. Taflove, and V. Backman, “Photonic nanojet-enabled optical data storage,” Opt. Express 16, 13713–13719 (2008).
[CrossRef]

Konstantatos, G.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
[CrossRef]

Latif, S.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Lecler, S.

Li, X.

Liu, J.

J. Liu, Photonic Devices (Cambridge University, 2005).

Ly-Gagnon, D.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Majewski, M. L.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Martin, O. J. F.

Matteo, J. A.

Mendez-Ruiz, C.

Meyrueis, P.

Miller, D. A. B.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006).
[CrossRef]

Muhlig, S.

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Okyay, A. K.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006).
[CrossRef]

Pianta, M.

Popov, E.

Rakic, A. D.

Rigneault, H.

Rockstuhl, C.

Roden, J. A.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Sahakian, A.

Sahakian, A. V.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).

Saraswat, K. C.

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006).
[CrossRef]

Sargent, E. H.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
[CrossRef]

Scharf, T.

Simpson, J. J.

Stout, B.

Taflove, A.

Takakura, Y.

Tang, L.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009).
[CrossRef]

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006).
[CrossRef]

Veronis, G.

Wenger, J.

White, J. S.

Yu, Z.

Yuen, Y.

Appl. Opt.

Electron. Lett.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45, 706–708 (2009).
[CrossRef]

IEEE Photon. J.

L. Colace and G. Assanto, “Germanium on silicon for near-infrared light sensing,” IEEE Photon. J. 1, 69–79 (2009).
[CrossRef]

J. Comput. Theor. Nanosci.

A. Heifetz, S. C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, “Photonic nanojets,” J. Comput. Theor. Nanosci. 6, 1979–1992 (2009).

Jpn. J. Appl. Phys.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys. 44, L364–L366 (2005).

Microw. Opt. Technol. Lett.

J. A. Roden and S. D. Gedney, “Convolutional PML (CPML): an efficient FDTD implementation of the CFS-PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000).
[CrossRef]

Nat. Nanotechnol.

G. Konstantatos and E. H. Sargent, “Nanostructured materials for photon detection,” Nat. Nanotechnol. 5, 391–400 (2010).
[CrossRef]

Nat. Photonics

L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, 2005).

J. Liu, Photonic Devices (Cambridge University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the device. (a) Top view of the device with gold electrodes in the x direction. (b) Side view of the device showing Ge in the gap region between the electrodes. Two cross sections of the device are also shown as follows: (c) through line 1 in Fig. 1(a) and (d) through line 2 in Fig. 1(a).

Fig. 2.
Fig. 2.

(a) Comparison of the normalized spectra relative to each maxima for the source waveform (blue curve) and for the E-field sampled in the nanojet (green curve). (b) FDTD-computed photonic nanojet intensity relative to the incident plane wave versus distance from the microsphere’s shadow-side surface along the z axis. The illumination wavelength, λ=1310nm. Four cases are shown as follows: homogenous microsphere for refractive index, n=1.8, n=1.59 (polystyrene), n=1.43 (silica), and n=1.2.

Fig. 3.
Fig. 3.

Visualization of the FDTD-computed scattered E field (|E|) for a 6.5 μm diameter polystyrene microsphere as incident wavelength, λ=1310nm (with no photodetector present).

Fig. 4.
Fig. 4.

FDTD-calculated optical near-field intensity (|E|2) in the xy plane 30 nm above the Si substrate, for device structure (through the Ge): (a) for the case of no gold electrodes and (b) with gold electrodes. FDTD-calculated |E|2 for (c) the xz plane for the case with gold electrodes [through line 2 in Fig. 1(a)]. The color scale bar refers to the enhancement ratio relative to the squared incident field magnitude.

Metrics