Abstract

We investigated the design method of an infrared (IR)/microwave (MW) micromirror array type of beam combiner. The size of micromirror is in microscopic levels and comparable to MW wavelengths, so that the MW will not react in these dimensions, whereas the much shorter optical wavelengths will be reflected by them. Hence, the MW multilayered substrate was simplified and designed using transmission line theory. The beam combiner used an IR wavefront-division imaging technique to reflect the IR radiation image to the unit under test (UUT)’s pupil in a parallel light path. In addition, the boresight error detected by phase monopulse radar was analyzed using a moment-of method (MoM) and multilevel fast multipole method (MLFMM) acceleration technique. The boresight error introduced by the finite size of the beam combiner was less than 1°. Finally, in order to verify the wavefront-division imaging technique, a prototype of a micromirror array was fabricated, and IR images were tested. The IR images obtained by the thermal imager verified the correctness of the wavefront-division imaging technique.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
    [CrossRef]
  2. J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
    [CrossRef]
  3. S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
    [CrossRef]
  4. T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at The Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).
    [CrossRef]
  5. S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).
  6. S. Mobley, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).
    [CrossRef]
  7. S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).
    [CrossRef]
  8. Y. Tian, R. Xu, R. Shi, X. Wang, Q. Li, L. Zhang, and Z. Li, “IR/MW multilayered dielectric plate beam combiner design, optimization and evaluation,” Appl. Opt. 52, 288–297 (2013).
    [CrossRef]
  9. L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).
  10. D. Raguin and G. M. Morris, “Antireflection-structured surfaces for the infrared spectral region,” Appl. Opt. 32, 1154–1167 (1993).
    [CrossRef]
  11. D. Raguin and G. M. Morris, “Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles,” Appl. Opt. 32, 2582–2598 (1993).
    [CrossRef]
  12. T. K. Gaylord, W. E. Baird, and M. G. Moharam, “Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings,” Appl. Opt. 25, 4562–4567 (1986).
    [CrossRef]
  13. E. N. Glytsis and T. K. Gaylord, “High-spatial-frequency binary and multilevel stairstep gratings: polarization-selective mirrors and broadband antireflection surfaces,” Appl. Opt. 31, 4459–4470 (1992).
    [CrossRef]
  14. C. W. Haggans, L. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mountings,” J. Opt. Soc. Am. A 10, 2217–2225 (1993).
    [CrossRef]
  15. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).
  16. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73, 1105–1112 (1983).
    [CrossRef]
  17. V. Lomakin and E. Michielssen, “Beam transmission through periodic subwavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564–1581 (2007).
    [CrossRef]
  18. E. E. Kriezis and D. P. Chrissoulidis, “EM-Wave scattering by an inclined strip grating,” IEEE. Trans. Antenna. Propag. 41, 1473–1480 (1993).
    [CrossRef]
  19. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  20. S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).
  21. S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).
  22. X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).

2013 (1)

2012 (1)

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
[CrossRef]

2010 (1)

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

2007 (1)

V. Lomakin and E. Michielssen, “Beam transmission through periodic subwavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564–1581 (2007).
[CrossRef]

2000 (1)

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).
[CrossRef]

1998 (1)

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

1996 (2)

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at The Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).
[CrossRef]

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

1995 (2)

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
[CrossRef]

1994 (1)

S. Mobley, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).
[CrossRef]

1993 (4)

1992 (1)

1986 (1)

1983 (1)

1956 (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).

Baird, W. E.

Ballard, G. H.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
[CrossRef]

Barton, D. K.

S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Bunfield, D.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
[CrossRef]

Chrissoulidis, D. P.

E. E. Kriezis and D. P. Chrissoulidis, “EM-Wave scattering by an inclined strip grating,” IEEE. Trans. Antenna. Propag. 41, 1473–1480 (1993).
[CrossRef]

Cole, J.

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

Cooper, J.

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

Gareri, J.

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).
[CrossRef]

Gareri, J. P.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
[CrossRef]

Gaylord, T. K.

Gearhart, S. A.

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at The Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).
[CrossRef]

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
[CrossRef]

Glytsis, E. N.

Haggans, C. W.

Harris, T. J.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
[CrossRef]

Jarem, J.

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

Kardian, C. J.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
[CrossRef]

Kostuk, R. K.

Kriezis, E. E.

E. E. Kriezis and D. P. Chrissoulidis, “EM-Wave scattering by an inclined strip grating,” IEEE. Trans. Antenna. Propag. 41, 1473–1480 (1993).
[CrossRef]

Li, L.

Li, Q.

Li, Z.

Lomakin, V.

V. Lomakin and E. Michielssen, “Beam transmission through periodic subwavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564–1581 (2007).
[CrossRef]

Manasson, A.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Manasson, V.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Michielssen, E.

V. Lomakin and E. Michielssen, “Beam transmission through periodic subwavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564–1581 (2007).
[CrossRef]

Mobley, S.

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

S. Mobley, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).
[CrossRef]

Mobley, S. B.

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Morris, J. W.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
[CrossRef]

O’Bannon, T. E.

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at The Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).
[CrossRef]

Prendergast, D. T.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
[CrossRef]

Raguin, D.

Rytov, S. M.

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).

Sadovnik, L.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Saylor, D.

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
[CrossRef]

Sheng, X. Q.

X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).

Sherman, S. M.

S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).

Shi, R.

Song, W.

X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).

Thomas, B.

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

Tian, Y.

Vanderford, V.

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

Wang, S. X.

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Wang, X.

Winters, D. T.

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Xu, R.

Xu, Y. H.

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Yepishin, V.

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Zhang, L.

Zhang, Y. P.

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Appl. Opt. (5)

IEEE Trans. Antennas Propag. (1)

V. Lomakin and E. Michielssen, “Beam transmission through periodic subwavelength hole structures,” IEEE Trans. Antennas Propag. 55, 1564–1581 (2007).
[CrossRef]

IEEE. Trans. Antenna. Propag. (1)

E. E. Kriezis and D. P. Chrissoulidis, “EM-Wave scattering by an inclined strip grating,” IEEE. Trans. Antenna. Propag. 41, 1473–1480 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Optik (1)

Y. P. Zhang, S. X. Wang, and Y. H. Xu, “Dual-mode MMW/IR simulation of beam combiner,” Optik 121, 1003–1008 (2010).
[CrossRef]

Proc. SPIE (8)

J. P. Gareri, G. H. Ballard, J. W. Morris, D. Bunfield, and D. Saylor, “Application of scene projection technologies at the AMRDEC SSDD HWIL facilities,” Proc. SPIE 8356, 83560L (2012).
[CrossRef]

S. A. Gearhart, T. J. Harris, C. J. Kardian, D. T. Prendergast, and D. T. Winters, “A hardware-in-the-loop test facility for dual-mode infrared and radar guidance systems,” Proc. SPIE 2469, 170–180 (1995).
[CrossRef]

T. E. O’Bannon and S. A. Gearhart, “Dual-mode infrared and radar hardware-in-the-loop test assets at The Johns Hopkins University Applied Physics Laboratory,” Proc. SPIE 2741, 332–346 (1996).
[CrossRef]

S. Mobley, V. Vanderford, J. Cooper, and B. Thomas, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2469, 15–19 (1995).

S. Mobley, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2223, 100–111 (1994).
[CrossRef]

S. B. Mobley and J. Gareri, “Hardware-in-the-loop simulation (HWIL) facility for development, test, and evaluation of multi-spectral missile systems—update,” Proc. SPIE 4027, 11–21 (2000).
[CrossRef]

S. Mobley, J. Cole, J. Cooper, and J. Jarem, “U.S. Army missile command dual-mode millimeter wave/infrared simulator development,” Proc. SPIE 2741, 316–331 (1996).

L. Sadovnik, A. Manasson, V. Manasson, and V. Yepishin, “Infrared/millimeter wave beam combiner utilizing holographic optical element,” Proc. SPIE 3464, 155–163 (1998).

Sov. Phys. JETP (1)

S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–474 (1956).

Other (3)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

S. M. Sherman and D. K. Barton, Monopulse Principles and Techniques (Artech House, 2011).

X. Q. Sheng and W. Song, Essentials of Computational Electromagnetics (Wiley, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Dual-mode common-aperture IR/MW simulator overview.

Fig. 2.
Fig. 2.

Structure of micromirror array beam combiner.

Fig. 3.
Fig. 3.

Constraints of distance and size.

Fig. 4.
Fig. 4.

MW power transmission rate: (a) parallel and (b) perpendicular.

Fig. 5.
Fig. 5.

IPD of MW (a) parallel and (b) perpendicular.

Fig. 6.
Fig. 6.

Schematic diagram of wavefront-division imaging technique.

Fig. 7.
Fig. 7.

Wavefront distribution by ray tracing method.

Fig. 8.
Fig. 8.

Electromagnetic analysis of beam combiner model.

Fig. 9.
Fig. 9.

IPD calculated by transmission line method.

Fig. 10.
Fig. 10.

IPD calculated by MoM.

Fig. 11.
Fig. 11.

Phase error aroused by the finite size of the beam combiner.

Fig. 12.
Fig. 12.

IR images without and with the beam combiner.

Tables (1)

Tables Icon

Table 1. Structure of Substrate

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

DIR=2Lctan(ωIFOV+ωSFOV)+ϕIR.
DMW=2LctanωMW+ϕMW.
{x=rcosθy=rsinθ.
r=Lc/cosθ.
l=Rr.
{xp=xlcos(2α0θ)yp=ylsin(2α0θ),
{xc=x+rcos(2α0θ)yc=y+rsin(2α0θ).
Es=n=exp[jknd(sinθiMW+sinθVMW)],
φ=2πn(dλMW)(sinθiMW+sinθVMW).
(dλMW)(sinθiMW+sinθVMW)=±m,
fb=mc(1±sinθiMW)d,
θIIR=α0+θiIR.
WR=WIcos(θiIRα0)cos(θiIR+α0),
DR=cosα0sinα0tanθiIRcosα0sinα0tanθiIR.
N=WIdcosθIIR.
2Δθ=2λIRNdcosθI,
2Δθ=2λIRfWI.
ΔOPD=2πλIRdsinα0cosθi(1+sin2θi).
ϕR=360°ϕMWsin(θ)λMW.
dθ=dϕRλMW360°ϕMWcosθ.
dϕR=dϕbdϕa.

Metrics