Abstract

For extremely high-performance lithographic lenses, the edge level accuracy of the manufacturing process and multicompensation strategies must be applied. Element clocking can be effectively used to compensate for the low-order figure errors of the elements. Considering that commercial optical software is usually incapable of obtaining good convergence for clocking optimization, this paper proposes a mathematical model of a lithographic lens containing the errors of a surface figure, after which a clocking optimization algorithm is programmed. A clocking optimization instance proving that the clocking optimization algorithm is capable of finding the optimized angle of elements and that clocking is an effective compensation strategy. The calculated accuracy of the proposed mathematic model was found to be acceptable for clocking optimization.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Xu, “Optical ddesign and imaging performance compensation for the lithographic lens,” Ph.D. dissertation (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2011) pp. 29–31.
  2. T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
    [CrossRef]
  3. T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
    [CrossRef]
  4. E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
    [CrossRef]
  5. P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).
  6. X. Wei and X. Yu, “An optical wavefront sensing and reconstruction method based on Zernike polynominals,” Acta Opt. Sin. 14, 718–723 (1994).
  7. Code V, ORA corporation, http://www.opticalres.com/ .

2011 (1)

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

2010 (1)

E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
[CrossRef]

2003 (1)

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[CrossRef]

2000 (1)

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[CrossRef]

1994 (1)

X. Wei and X. Yu, “An optical wavefront sensing and reconstruction method based on Zernike polynominals,” Acta Opt. Sin. 14, 718–723 (1994).

Gu, Y.

E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
[CrossRef]

Kang, Y.

E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
[CrossRef]

Koizumi, R.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[CrossRef]

Koyama, T.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[CrossRef]

Liu, W.

E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
[CrossRef]

Matsuyama, T.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[CrossRef]

Miao, E.

E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
[CrossRef]

Nomura, K.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[CrossRef]

Ozawa, T.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[CrossRef]

Suda, S.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[CrossRef]

Sui, Y.

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

Suzuki, A.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[CrossRef]

Takahashi, K.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[CrossRef]

Tanaka, I.

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[CrossRef]

Tian, W.

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

Wang, L.

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

Wang, P.

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

Wang, R.

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

Wei, X.

X. Wei and X. Yu, “An optical wavefront sensing and reconstruction method based on Zernike polynominals,” Acta Opt. Sin. 14, 718–723 (1994).

Xu, W.

W. Xu, “Optical ddesign and imaging performance compensation for the lithographic lens,” Ph.D. dissertation (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2011) pp. 29–31.

Yang, H.

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

Yoshihara, T.

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[CrossRef]

Yu, X.

X. Wei and X. Yu, “An optical wavefront sensing and reconstruction method based on Zernike polynominals,” Acta Opt. Sin. 14, 718–723 (1994).

Zhang, J.

E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
[CrossRef]

Acta Opt. Sin. (2)

P. Wang, W. Tian, R. Wang, L. Wang, Y. Sui, and H. Yang, “Rotating chuck test for removing chuck error of optical surface,” Acta Opt. Sin. 31, 136–143 (2011).

X. Wei and X. Yu, “An optical wavefront sensing and reconstruction method based on Zernike polynominals,” Acta Opt. Sin. 14, 718–723 (1994).

Chinese J. Lasers (1)

E. Miao, J. Zhang, Y. Gu, Y. Kang, and W. Liu, “Measurement error analysis of high precision Fizeau interferometer for lithography projection objective,” Chinese J. Lasers 37, 2029–2034 (2010).
[CrossRef]

Proc. SPIE (2)

T. Matsuyama, I. Tanaka, T. Ozawa, K. Nomura, and T. Koyama, “Improving lens performance through the most recent lens manufacturing process,” Proc. SPIE 5040, 801–810 (2003).
[CrossRef]

T. Yoshihara, R. Koizumi, K. Takahashi, S. Suda, and A. Suzuki, “Realization of very small aberration projection lenses,” Proc. SPIE 4000, 559–566 (2000).
[CrossRef]

Other (2)

W. Xu, “Optical ddesign and imaging performance compensation for the lithographic lens,” Ph.D. dissertation (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2011) pp. 29–31.

Code V, ORA corporation, http://www.opticalres.com/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Optical structure of a projection lens.

Fig. 2.
Fig. 2.

Footprint of two surfaces: (a) away from the stop and (b) near the stop.

Fig. 3.
Fig. 3.

Process of the optimization algorithm.

Fig. 4.
Fig. 4.

rms values of transmitted wavefront errors of elements.

Fig. 5.
Fig. 5.

Exit pupil wavefront aberration of the projection lens before optimization.

Fig. 6.
Fig. 6.

Exit pupil wavefront aberration of the projection lens after optimization.

Fig. 7.
Fig. 7.

Contrast of objective values for the iterations: (a) computed by the mathematical model and (b) computed by optical software.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

W=SE/(n1),
C(θ)=B(θ)*C,
B(θ)=[100cos(θ)0sin(θ)00000sin(θ)cos(θ)0000sin(θ)0cos(θ)001].
WD=Bz*C(θ),

Metrics