Abstract

This paper proposes an approach based on an optical imaging technique for the period measurement of fiber Bragg gratings (FBG). The simple, direct technique involves a differential interface contrast (DIC) microscope and a high-resolution CCD camera. Image processing is performed on the microscope images to obtain low-noise grating profiles and then the grating periods. Adopting a large image sample size in the image processing can reduce uncertainty. During the investigation, FBGs of different grating periods are fabricated by prestraining the photosensitive fibers during the UV-writing process. A good linearity between the measured Bragg wavelengths and grating periods is observed and the measured strain—optics coefficient was found to be in agreement with reported literature.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. I. Medvedkov, S. A. Vasiliev, P. I. Gnusin, and E. M. Dianov, “Photosensitivity of optical fibers with extremely high germanium concentration,” Opt. Mater. Express 2, 1478–1489 (2012).
    [CrossRef]
  2. A. Gillooly, “Photosensitive fibers: growing gratings,” Nat. Photonics 5, 468–469 (2011).
    [CrossRef]
  3. A. Snyder and W. Young, “Modes of optical waveguides,” J. Opt. Soc. Am. 68, 297–309 (1978).
    [CrossRef]
  4. A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
    [CrossRef]
  5. M. G. Sceats, G. R. Atkins, and S. B. Poole, “Photolytic index changes in optical fibers,” Annu. Rev. Mater. Sci. 23, 381–410 (1993).
    [CrossRef]
  6. N. H. Ky, H. G. Limberger, R. P. Salathe, and F. Cochet, “Effects of drawing tension on the photosensitivity of Sn-Ge- and B-Ge codoped core fibers,” Opt. Lett. 23, 1402–1404 (1998).
    [CrossRef]
  7. W. Hermann, M. Hutjens, and D. U. Wiechert, “Stress in optical waveguides. 3: stress induced index change,” Appl. Opt. 28, 1980–1983 (1989).
    [CrossRef]
  8. H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
    [CrossRef]
  9. M. Pluta, Advanced Light Microscopy: Specialized Methods (Elsevier, 1989).
  10. K. S. Lim, H.-Z. Yang, W.-Y. Chong, Y.-K. Cheong, C.-H. Lim, N. M. Ali, and H. Ahmad, “Axial contraction in etched optical fiber due to internal stress reduction,” Opt. Express 21, 2551–2562 (2013).
    [CrossRef]
  11. N. M. Dragomir, C. Rollinson, S. A. Wade, A. J. Stevenson, S. F. Collins, G. W. Baxter, P. M. Farrell, and A. Roberts, “Nondestructive imaging of a type I optical fiber Bragg grating,” Opt. Lett. 28, 789–791 (2003).
    [CrossRef]
  12. B. P. Kouskousis, C. M. Rollinson, D. J. Kitcher, S. F. Collins, G. W. Baxter, S. A. Wade, N. M. Dragomir, and A. Roberts, “Quantitative investigation of the refractive-index modulation within the core of a fiber Bragg grating,” Opt. Express 14, 10332–10338 (2006).
    [CrossRef]
  13. Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

A. Gillooly, “Photosensitive fibers: growing gratings,” Nat. Photonics 5, 468–469 (2011).
[CrossRef]

2006 (1)

2004 (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

2003 (1)

1999 (1)

H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
[CrossRef]

1998 (1)

1994 (1)

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

1993 (1)

M. G. Sceats, G. R. Atkins, and S. B. Poole, “Photolytic index changes in optical fibers,” Annu. Rev. Mater. Sci. 23, 381–410 (1993).
[CrossRef]

1989 (1)

1978 (1)

Ahmad, H.

Ali, N. M.

Atkins, G. R.

M. G. Sceats, G. R. Atkins, and S. B. Poole, “Photolytic index changes in optical fibers,” Annu. Rev. Mater. Sci. 23, 381–410 (1993).
[CrossRef]

Baxter, G. W.

Brown, D. A.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

Cheong, Y.-K.

Chong, W.-Y.

Cochet, F.

H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, and F. Cochet, “Effects of drawing tension on the photosensitivity of Sn-Ge- and B-Ge codoped core fibers,” Opt. Lett. 23, 1402–1404 (1998).
[CrossRef]

Collins, S. F.

Dianov, E. M.

Dong, L.

H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
[CrossRef]

Dragomir, N. M.

Farrell, P. M.

Gang, X.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

Gillooly, A.

A. Gillooly, “Photosensitive fibers: growing gratings,” Nat. Photonics 5, 468–469 (2011).
[CrossRef]

Gnusin, P. I.

Hermann, W.

Hutjens, M.

Kitcher, D. J.

Kouskousis, B. P.

Ky, H. N.

H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
[CrossRef]

Ky, N. H.

Lim, C.-H.

Lim, K. S.

Limberger, H. G.

H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
[CrossRef]

N. H. Ky, H. G. Limberger, R. P. Salathe, and F. Cochet, “Effects of drawing tension on the photosensitivity of Sn-Ge- and B-Ge codoped core fibers,” Opt. Lett. 23, 1402–1404 (1998).
[CrossRef]

Medvedkov, O. I.

Morse, T. F.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

Pluta, M.

M. Pluta, Advanced Light Microscopy: Specialized Methods (Elsevier, 1989).

Poole, S. B.

M. G. Sceats, G. R. Atkins, and S. B. Poole, “Photolytic index changes in optical fibers,” Annu. Rev. Mater. Sci. 23, 381–410 (1993).
[CrossRef]

Reinhart, L.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

Roberts, A.

Rollinson, C.

Rollinson, C. M.

Salath, R. P.

H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
[CrossRef]

Salathe, R. P.

Sceats, M. G.

M. G. Sceats, G. R. Atkins, and S. B. Poole, “Photolytic index changes in optical fibers,” Annu. Rev. Mater. Sci. 23, 381–410 (1993).
[CrossRef]

Snyder, A.

Stevenson, A. J.

Vasiliev, S. A.

Wade, S. A.

Wang, J. Q.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

Wiechert, D. U.

Yablon, A. D.

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

Yang, H.-Z.

Young, W.

Zhang, Q.

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

M. G. Sceats, G. R. Atkins, and S. B. Poole, “Photolytic index changes in optical fibers,” Annu. Rev. Mater. Sci. 23, 381–410 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. N. Ky, H. G. Limberger, R. P. Salath, F. Cochet, and L. Dong, “Hydrogen-induced reduction of axial stress in optical fiber cores,” Appl. Phys. Lett. 74, 516–518 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. D. Yablon, “Optical and mechanical effects of frozen-in stresses and strains in optical fibers,” IEEE J. Sel. Top. Quantum Electron. 10, 300–311 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q. Zhang, D. A. Brown, L. Reinhart, T. F. Morse, J. Q. Wang, and X. Gang, “Tuning Bragg wavelength by writing gratings on prestrained fibers,” IEEE Photon. Technol. Lett. 6, 839–841 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Nat. Photonics (1)

A. Gillooly, “Photosensitive fibers: growing gratings,” Nat. Photonics 5, 468–469 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Other (1)

M. Pluta, Advanced Light Microscopy: Specialized Methods (Elsevier, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) B–Ge codoped photosensitive fiber (Fibercore Ltd: PS1250/1500) with specifications: initial fiber diameter of 125.3 μm, core-cladding index difference of 0.5% and 10 mol. % of GeO2 and 14–18 mol. % of B2O3, (b) Writing FBG on prestrained optical fiber using a phase mask technique. (c) Grating period was reduced after the stress is removed.

Fig. 2.
Fig. 2.

DIC microscope image of the grating structure with a clear visibility of fringes. The sample size M=15 is used to generate the grating profile (original) from the sample image. The smoothened profile is produced by feeding the profile to a moving average filter, size of 13. The spacing between two adjacent peaks (asterisk) of the grating profile corresponds to a grating period Λ.

Fig. 3.
Fig. 3.

(a) DIC microscope image of FBG structure with clear dark and bright regions perpendicular to fiber axial axis. The inset shows the enlarged image of the grating structure from the core region of the fiber. (b) Graph of standard deviation calculated from the corresponding intensity profile. (c) Dots distribution map of standard deviation against grating period. The red box marks the data with smallest standard deviation.

Fig. 4.
Fig. 4.

Graphical interpretation of the calculated grating period with respect to the sample size M. The error bar (sample standard deviation) decreases with increasing M.

Fig. 5.
Fig. 5.

Period of FBGs Λ with respect to the rotation angle of longitudinal axis θ in degrees. The shaded area is bounded by the ± standard deviation of the measurement, which is done at sample size of 10.

Fig. 6.
Fig. 6.

Relationship between fractional Bragg wavelength shift Δλ/λ and the strain ΔΛ/Λ.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔλλB=Δnneff+ΔΛΛ.
ΔλλB=ηΔΛΛ,
I(x,y)=[i0,0i0,1i0,ki0,k+L1i0,W1i1,0i1,1i1,ki1,k+L1i1,W1ij,0ij,1ij,kij,k+L1ij,W1ij+M1,0ij+M1,1ij+M1,kij+M1,k+L1ij+M1,W1iH1,0iH1,1iH1,kiH1,k+L1iH1,W1],
P(j,k)=1Ml=jj+M1il,k,
P˜(j,k)=1Lm=kk+L1P(j,m),

Metrics