Abstract

A polarizer is placed in an external feedback cavity to form polarized optical feedback. The effect of the different directions of polarized optical feedback on laser polarization characteristics (LPCs) is investigated experimentally and theoretically. The angle between the optical axis of the polarizer and the laser polarization is changed from 0° to 90°. It is found that LPCs vary greatly under different directions of polarized optical feedback. The angle range can be divided into five zones (two flipping zones, -polarization zone, bistable zone, and -polarization zone) according to the different LPCs. When the angle is in the range of the -polarization zone (-polarization zone), the laser outputs -polarization (-polarization). Thus, one can choose either -polarization or -polarization by properly aligning the axis of the polarizer.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. X. Liu, M. Liu, and S. L. Zhang, “Method for the measurement of phase retardation of any wave plate with high precision,” Appl. Opt. 47, 5562–5569 (2008).
    [CrossRef]
  2. K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
    [CrossRef]
  3. M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
    [CrossRef]
  4. B. M. Holmes, M. A. Naeem, D. C. Hutchings, J. H. Marsh, and A. E. Kelly, “A semiconductor laser with monolithically integrated dynamic polarization control,” Opt. Express 20, 20545–20550 (2012).
    [CrossRef]
  5. J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
    [CrossRef]
  6. A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
    [CrossRef]
  7. G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
    [CrossRef]
  8. G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
    [CrossRef]
  9. P. Paddon, E. Sjerve, A. D. May, M. Bourouis, and G. Stéphan, “Polarization modes in a quasi-isotropic laser: a general anisotropy model with applications,” J. Opt. Soc. Am. B 9, 574–589 (1992).
    [CrossRef]
  10. P. Besnard, X. L. Jia, R. Dalgliesh, A. D. May, and G. Stéphan, “Polarization switching in a microchip Nd:YAG laser using polarized feedback,” J. Opt. Soc. Am. B 10, 1605–1609 (1993).
    [CrossRef]
  11. G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984).
    [CrossRef]
  12. R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
    [CrossRef]
  13. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
    [CrossRef]

2012 (1)

2008 (1)

2004 (1)

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

2003 (1)

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

1993 (1)

1992 (2)

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

P. Paddon, E. Sjerve, A. D. May, M. Bourouis, and G. Stéphan, “Polarization modes in a quasi-isotropic laser: a general anisotropy model with applications,” J. Opt. Soc. Am. B 9, 574–589 (1992).
[CrossRef]

1986 (1)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

1985 (1)

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

1984 (2)

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984).
[CrossRef]

1966 (1)

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[CrossRef]

Acket, G. A.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984).
[CrossRef]

Arizaleta, M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

Besnard, P.

Blondel, M.

Boef, A. D.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984).
[CrossRef]

Bourouis, M.

Boyle, W. J. O.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Camarena, M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

Chraplyvy, A. R.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

Culshaw, W.

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[CrossRef]

Dalgliesh, R.

Floch, A. L.

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Grattan, K. T. V.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Holmes, B. M.

Hugon, D.

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

Hutchings, D. C.

Jia, X. L.

Kannelaud, J.

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[CrossRef]

Kelly, A. E.

Lenornamd, J. M.

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Lenstra, D.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984).
[CrossRef]

Liu, M.

Liu, W. X.

Marsh, J. H.

May, A. D.

Megret, P.

Michalzik, R.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

Naeem, M. A.

Naour, R. L.

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Ostermann, J. M.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

Paddon, P.

Palmer, A. W.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Panajotov, K.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
[CrossRef]

Ropars, G.

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Sciamanna, M.

Sjerve, E.

Stephan, G.

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

Stéphan, G.

Thienpont, H.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

M. Sciamanna, K. Panajotov, H. Thienpont, I. Veretennicoff, P. Megret, and M. Blondel, “Optical feedback induces polarization mode hopping in vertical-cavity surface-emitting lasers,” Opt. Lett. 28, 1543–1545 (2003).
[CrossRef]

Tkach, R. W.

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

Unold, H. J.

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

Verbeek, B. H.

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984).
[CrossRef]

Veretennicoff, I.

Wang, W. M.

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

Zhang, S. L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Panajotov, M. Arizaleta, M. Camarena, H. Thienpont, H. J. Unold, J. M. Ostermann, and R. Michalzik, “Polarization switching induced by phase change in extremely short external cavity vertical-cavity surface emitting lasers,” Appl. Phys. Lett. 84, 2763–2765 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. A. Acket, D. Lenstra, A. D. Boef, and B. H. Verbeek, “The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers,” IEEE J. Quantum Electron. 20, 1163–1169 (1984).
[CrossRef]

J. Lightwave Technol. (2)

R. W. Tkach and A. R. Chraplyvy, “Regimes of feedback effects in 1.5-μm distributed feedback lasers,” J. Lightwave Technol. 4, 1655–1661 (1986).
[CrossRef]

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, “Self-mixing interference inside a single-mode diode laser for optical sensing applications,” J. Lightwave Technol. 12, 1577–1587 (1994).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. (1)

J. Kannelaud and W. Culshaw, “Coherence effects in gaseous laser with axial magnetic field. II. Experimental,” Phys. Rev. 141, 237–245 (1966).
[CrossRef]

Phys. Rev. A (1)

G. Ropars, A. L. Floch, and R. L. Naour, “Polarization control mechanisms in vectorial bistable lasers for one-frequency systems,” Phys. Rev. A 46, 623–640 (1992).
[CrossRef]

Phys. Rev. Lett. (2)

G. Stephan and D. Hugon, “Light polarization of a quasi-isotropic laser with optical feedback,” Phys. Rev. Lett. 55, 703–706 (1985).
[CrossRef]

A. L. Floch, G. Ropars, J. M. Lenornamd, and R. L. Naour, “Dynamics of laser eigenstates,” Phys. Rev. Lett. 52, 918–921 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of experimental setup and original coordinates. PZT, piezoelectric transducer; M3, feedback mirror; AMP, PZT-driven circuit; AT, attenuator; P1, P2, polarizers; M1, M2, cavity mirrors; BS, beam splitter; SI, scanning interferometer; W, Wollaston prism; D1, D2, photodetectors.

Fig. 2.
Fig. 2.

(a) Longitudinal mode of laser with optical feedback being blocked. (b) Longitudinal mode when polarization flipping occurs, without (trace3) and with (trace4) P2 placed between the BS and SI. The arrows mark the zero voltage of the SI signal. The horizontal axis represents zero PZT voltage.

Fig. 3.
Fig. 3.

Intensities of I and I at different θ value. The arrows mark the zero voltage of intensity signal. The horizontal axes represent zero PZT voltage.

Fig. 4.
Fig. 4.

LPCs at different θ values. (a) θ is increased from 0° to 90°. (b) θ is decreased from 90° to 0°. (c) The five zones. The arrows indicate the variation tendency of θ.

Fig. 5.
Fig. 5.

g and g change with feedback cavity length l. (a) θ=30° and (b) θ=60°. Arrows mark the zero point of Λg.

Fig. 6.
Fig. 6.

ΔgC and ΔgV change with θ.

Tables (1)

Tables Icon

Table 1. Relationship between ΛgC, ΛgV, and ΛgT in Different Zones

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Eo(t)+Ei(t)=E0(t).
Ei(t)=r1r2exp(i2kL+2gL)E0(t).
Eo(t)=TATTPr2r3t12×exp[i2k(l+L)+2gL]ME0(t),
g=g0+βMcos(2kl),
g=g0+βMcos(2kl).

Metrics