Abstract

In this paper, design of a resonator fiber-optic gyroscope comprised of a single laser source and two optical fiber resonator rings is presented. A typical gyroscope measures angular rotation around a fixed axis, whereas the proposed design can sense simultaneous rotation about two orthogonal axes. Two variants of the design are proposed and analyzed using a mathematical model based on Jones matrix methodology.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Nayak, “Fiber-optic gyroscopes: from design to production,” Appl. Opt. 50, E152–E161 (2011).
    [CrossRef]
  2. G. A. Sanders, M. G. Prentiss, and S. Ezekiel, “Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity,” Opt. Lett. 6, 569–571 (1981).
    [CrossRef]
  3. D. M. Shupe, “Fiber resonator gyroscope: sensitivity and thermal nonreciprocity,” Appl. Opt. 20, 286–289 (1981).
    [CrossRef]
  4. R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro,” Proc. SPIE 719, 169–177 (1986).
    [CrossRef]
  5. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984).
    [CrossRef]
  6. Z. Jin, X. Yu, and H. Ma, “Resonator fiber optic gyro employing a semiconductor laser,” Appl. Opt. 51, 2856–2864 (2012).
    [CrossRef]
  7. X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31, 366–374 (2013).
    [CrossRef]
  8. X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
    [CrossRef]
  9. K. Hotate, “Polarization problem and countermeasures in passive/active resonator fiber optic gyros,” Proc. SPIE 2292, 227–239 (1994).
    [CrossRef]
  10. M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010).
  11. P. D. Pinnoji, J. Nayak, B. Prasadarao, and D. V. R. K. Reddy, “Study on two-axis resonant fiber optic gyroscope using single source,” International Conference on Fiber Optics and Photonics (PHOTONICS-2012) (Indian Institute of Technology Madras, Chennai, India, December2012).
  12. R. E. Meyer, S. Ezekiel, D. W. Stowe, and V. J. Tekippe, “Passive fiber optic ring resonator for rotation sensing,” Opt. Lett. 8, 644–646 (1983).
    [CrossRef]
  13. W. Wang and J. Xia, “The characterizations of polarization in resonator integrated optic gyroscope,” Opt. Quantum Electron. 42, 313–325 (2011).
    [CrossRef]
  14. G. A. Pavlath and H. J. Shaw, “Birefringence and polarization effects in fiber gyroscopes,” Appl. Opt. 21, 1752–1757 (1982).
    [CrossRef]

2013 (1)

2012 (1)

2011 (2)

J. Nayak, “Fiber-optic gyroscopes: from design to production,” Appl. Opt. 50, E152–E161 (2011).
[CrossRef]

W. Wang and J. Xia, “The characterizations of polarization in resonator integrated optic gyroscope,” Opt. Quantum Electron. 42, 313–325 (2011).
[CrossRef]

2009 (1)

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

1994 (1)

K. Hotate, “Polarization problem and countermeasures in passive/active resonator fiber optic gyros,” Proc. SPIE 2292, 227–239 (1994).
[CrossRef]

1986 (1)

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro,” Proc. SPIE 719, 169–177 (1986).
[CrossRef]

1984 (1)

1983 (1)

1982 (1)

1981 (2)

Armenise, M. N.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010).

Cardarelli, D.

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro,” Proc. SPIE 719, 169–177 (1986).
[CrossRef]

Carroll, R.

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro,” Proc. SPIE 719, 169–177 (1986).
[CrossRef]

Ciminelli, C.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010).

Coate, G. T.

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro,” Proc. SPIE 719, 169–177 (1986).
[CrossRef]

Coccoli, C. D.

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro,” Proc. SPIE 719, 169–177 (1986).
[CrossRef]

Dell’Olio, F.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010).

Ezekiel, S.

He, Z.

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31, 366–374 (2013).
[CrossRef]

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

Higashiguchi, M.

Hotate, K.

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31, 366–374 (2013).
[CrossRef]

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

K. Hotate, “Polarization problem and countermeasures in passive/active resonator fiber optic gyros,” Proc. SPIE 2292, 227–239 (1994).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984).
[CrossRef]

Iwatsuki, K.

Jin, Z.

Ma, H.

Meyer, R. E.

Nayak, J.

J. Nayak, “Fiber-optic gyroscopes: from design to production,” Appl. Opt. 50, E152–E161 (2011).
[CrossRef]

P. D. Pinnoji, J. Nayak, B. Prasadarao, and D. V. R. K. Reddy, “Study on two-axis resonant fiber optic gyroscope using single source,” International Conference on Fiber Optics and Photonics (PHOTONICS-2012) (Indian Institute of Technology Madras, Chennai, India, December2012).

Passaro, V. M. N.

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010).

Pavlath, G. A.

Pinnoji, P. D.

P. D. Pinnoji, J. Nayak, B. Prasadarao, and D. V. R. K. Reddy, “Study on two-axis resonant fiber optic gyroscope using single source,” International Conference on Fiber Optics and Photonics (PHOTONICS-2012) (Indian Institute of Technology Madras, Chennai, India, December2012).

Prasadarao, B.

P. D. Pinnoji, J. Nayak, B. Prasadarao, and D. V. R. K. Reddy, “Study on two-axis resonant fiber optic gyroscope using single source,” International Conference on Fiber Optics and Photonics (PHOTONICS-2012) (Indian Institute of Technology Madras, Chennai, India, December2012).

Prentiss, M. G.

Reddy, D. V. R. K.

P. D. Pinnoji, J. Nayak, B. Prasadarao, and D. V. R. K. Reddy, “Study on two-axis resonant fiber optic gyroscope using single source,” International Conference on Fiber Optics and Photonics (PHOTONICS-2012) (Indian Institute of Technology Madras, Chennai, India, December2012).

Sanders, G. A.

Shaw, H. J.

Shupe, D. M.

Stowe, D. W.

Tekippe, V. J.

Wang, W.

W. Wang and J. Xia, “The characterizations of polarization in resonator integrated optic gyroscope,” Opt. Quantum Electron. 42, 313–325 (2011).
[CrossRef]

Wang, X.

X. Wang, Z. He, and K. Hotate, “Automated suppression of polarization fluctuation in resonator fiber optic gyro with twin 90° polarization-axis rotated splices,” J. Lightwave Technol. 31, 366–374 (2013).
[CrossRef]

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

Xia, J.

W. Wang and J. Xia, “The characterizations of polarization in resonator integrated optic gyroscope,” Opt. Quantum Electron. 42, 313–325 (2011).
[CrossRef]

Yu, X.

Appl. Opt. (5)

J. Lightwave Technol. (1)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

W. Wang and J. Xia, “The characterizations of polarization in resonator integrated optic gyroscope,” Opt. Quantum Electron. 42, 313–325 (2011).
[CrossRef]

Proc. SPIE (3)

R. Carroll, C. D. Coccoli, D. Cardarelli, and G. T. Coate, “The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro,” Proc. SPIE 719, 169–177 (1986).
[CrossRef]

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyroscope with digital serrodyne scheme using a digital controller,” Proc. SPIE 7314, 731402 (2009).
[CrossRef]

K. Hotate, “Polarization problem and countermeasures in passive/active resonator fiber optic gyros,” Proc. SPIE 2292, 227–239 (1994).
[CrossRef]

Other (2)

M. N. Armenise, C. Ciminelli, F. Dell’Olio, and V. M. N. Passaro, Advances in Gyroscope Technologies (Springer-Verlag, 2010).

P. D. Pinnoji, J. Nayak, B. Prasadarao, and D. V. R. K. Reddy, “Study on two-axis resonant fiber optic gyroscope using single source,” International Conference on Fiber Optics and Photonics (PHOTONICS-2012) (Indian Institute of Technology Madras, Chennai, India, December2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of a conventional RFOG configuration.

Fig. 2.
Fig. 2.

Schematic of proposed series configuration of dual-axis RFOG.

Fig. 3.
Fig. 3.

Schematic of proposed parallel configuration of dual-axis RFOG.

Fig. 4.
Fig. 4.

Simulated output intensity for two detectors (D1 and D2) in the series configuration of dual-axis RFOG with (a) no rotation and (b) rotation about the x axis.

Fig. 5.
Fig. 5.

Simulated output intensity for four detectors (D1, D2, D3, and D4) in the parallel configuration of dual-axis RFOG with (a) no rotation, (b) rotation about the x axis, (c) rotation about the y axis, and (d) simultaneous rotation out both axes.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Ein=[EixEiy].
R=[cosθsinθsinθcosθ].
CT=(1r)(1κ)[1001],
CC=i(1r)κ[1001],
S12=eiφ[cosθeiξ/2sinθeiς/2sinθeiς/2cosθeiξ/2],
Scw=eiφs/2S12.
E=C2TC1CREin.
E=C3C{C4TE+C4C[I+S12C5CS21C5CS12C4T+(S12C5CS21C5CS12C4T)2++(S12C5CS21C5CS12C4T)n]S12C5CS21C5CS12C4CE}=C3C{C4T+C4CIIS12C5CS21C5CS12C4TS12C5CS21C5CS12C4C}E.
F=C4T+C4CIIS12C5CS21C5CS12C4TS12C5CS21C5CS12C4C.
G=C3CFC2TC1C.

Metrics