Abstract

A new kind of polymer porous fiber with elliptical air-holes is designed for obtaining high birefringence in the terahertz (THz) frequency range in this paper. Using the finite element method, the properties of this kind of fiber are simulated in detail including the single-mode propagation condition, the birefringence, and the loss. Theoretical results indicate that the single-mode THz wave in the frequency range from 0.73 to 1.22 THz can be guided in the fiber; the birefringence can be enhanced by rotating the major axis of the elliptical air-hole and there exists an optimal rotating angle at 30°. At this optimal angle a birefringence as high as 0.0445 can be obtained in a wide frequency range. Low-loss THz guidance can be achieved owing to the effective reduction of the material absorption in such a porous fiber. This research is useful for polarization-maintaining THz-wave guidance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Jacobsen, D. M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett. 21, 2011–2013 (1996).
    [CrossRef]
  2. Q. Chen, Z. P. Jiang, G. X. Xu, and X. C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Lett. 25, 1122–1124 (2000).
    [CrossRef]
  3. Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
    [CrossRef]
  4. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008).
    [CrossRef]
  5. L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
    [CrossRef]
  6. J. Q. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29, 1617–1619 (2004).
    [CrossRef]
  7. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef]
  8. T. I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
    [CrossRef]
  9. J. A. Harrington, R. George, and P. Pedersen, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [CrossRef]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945–2947 (2007).
    [CrossRef]
  11. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
    [CrossRef]
  12. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
    [CrossRef]
  13. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  14. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36, 666–668 (2011).
    [CrossRef]
  15. J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
    [CrossRef]
  16. H. L. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012).
    [CrossRef]
  17. S. Atakaramians, S. A. Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach for low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
    [CrossRef]
  18. H. B. Chen, D. R. Chen, and Z. Hong, “Squeezed lattice elliptical-hole terahertz fiber with high birefringence,” Appl. Opt. 48, 3943–3947 (2009).
    [CrossRef]
  19. L. Jing and J. Q. Yao, “Single mode condition and power fraction of air-cladding of total refractive guided porous polymer terahertz fibers,” Chin. Phys. Lett. 28, 084202 (2011).
    [CrossRef]
  20. X. G. Jiang, D. R. Chen, and G. F. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52, 770–774 (2013).
    [CrossRef]
  21. S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20, 1385–1391 (2012).
    [CrossRef]
  22. D. R. Chen and L. F. Shen, “Highly birefringent elliptical-hole photonic crystal fibers with double defects,” J. Lightwave Technol. 25, 2700–2705 (2007).
    [CrossRef]
  23. Y. Yue, G. Y. Kai, T. T. Sun, Z. Wang, L. Jin, Y. F. Lu, C. S. Zhang, J. G. Liu, Y. Li, Y. G. Liu, S. Z. Yuan, and X. Y. Dong, “Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice,” Opt. Lett. 32, 469–471 (2007).
    [CrossRef]
  24. S. Atakaramians, S. A. Vahid, H. E. Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
    [CrossRef]
  25. S. Atakaramians, S. A. Vahid, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
    [CrossRef]
  26. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
    [CrossRef]
  27. K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
    [CrossRef]
  28. B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011).
    [CrossRef]

2013 (2)

J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[CrossRef]

X. G. Jiang, D. R. Chen, and G. F. Hu, “Suspended hollow core fiber for terahertz wave guiding,” Appl. Opt. 52, 770–774 (2013).
[CrossRef]

2012 (2)

2011 (3)

2009 (4)

2008 (6)

S. Atakaramians, S. A. Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach for low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
[CrossRef]

N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008).
[CrossRef]

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[CrossRef]

2007 (4)

2005 (1)

T. I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

2004 (3)

2003 (1)

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
[CrossRef]

2000 (1)

1996 (1)

Abbott, D.

Adam, A. J. L.

Atakaramians, S.

Bang, O.

Bao, H. L.

Bowden, B.

Chen, D. R.

Chen, H. B.

Chen, J. Y.

Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
[CrossRef]

Chen, N. N.

J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[CrossRef]

Chen, Q.

Dong, X. Y.

Dupuis, A.

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Fischer, B. M.

Fisher, B. M.

S. Atakaramians, S. A. Vahid, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

George, R.

Grischkowsky, D.

Harrington, J. A.

Harsha, S. S.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

He, Y. F.

Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
[CrossRef]

Heidepriem, H. E.

Ho, L.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[CrossRef]

Hong, Z.

Hu, G. F.

Jacobsen, R. H.

Jeon, T. I.

T. I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Jepsen, P. U.

Jiang, X. G.

Jiang, Z. P.

Jin, L.

Jing, L.

L. Jing and J. Q. Yao, “Single mode condition and power fraction of air-cladding of total refractive guided porous polymer terahertz fibers,” Chin. Phys. Lett. 28, 084202 (2011).
[CrossRef]

Kai, G. Y.

Kee, C. S.

Kim, B. H.

Kim, S. E.

Knab, J. R.

Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
[CrossRef]

Ku, P. I.

Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
[CrossRef]

Laman, N.

Lee, C. G.

Lee, S.

Li, Y.

Liang, J.

J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[CrossRef]

Liu, J. G.

Liu, Y. G.

Lu, Y. F.

Markelz, A. G.

Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
[CrossRef]

Mazhorova, A.

Melinger, J. S.

Mitrofanov, O.

Mittleman, D. M.

Monro, T. M.

Nagel, M.

Nielsen, K.

Nuss, M. C.

Oh, K.

Pedersen, P.

Pepper, M.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[CrossRef]

Planken, P. C. M.

Rasmussen, H. K.

Ren, L. Y.

J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[CrossRef]

Rozé, M.

Saitoh, K.

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
[CrossRef]

Shen, L. F.

Skorobogatiy, M.

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Sun, T. T.

Taday, P.

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[CrossRef]

Ung, B.

Vahid, S. A.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Wang, Z.

Xu, G. X.

Yao, J. Q.

L. Jing and J. Q. Yao, “Single mode condition and power fraction of air-cladding of total refractive guided porous polymer terahertz fibers,” Chin. Phys. Lett. 28, 084202 (2011).
[CrossRef]

Yuan, S. Z.

Yue, Y.

Zhang, C. S.

Zhang, J. Q.

T. I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

J. Q. Zhang and D. Grischkowsky, “Waveguide terahertz time-domain spectroscopy of nanometer water layers,” Opt. Lett. 29, 1617–1619 (2004).
[CrossRef]

Zhang, X. C.

Zhou, C. H.

J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

T. I. Jeon, J. Q. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005).
[CrossRef]

Chin. Phys. Lett. (1)

L. Jing and J. Q. Yao, “Single mode condition and power fraction of air-cladding of total refractive guided porous polymer terahertz fibers,” Chin. Phys. Lett. 28, 084202 (2011).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Saitoh and M. Koshiba, “Single-polarization single-mode photonic crystal fibers,” IEEE Photon. Technol. Lett. 15, 1384–1386 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (1)

L. Ho, M. Pepper, and P. Taday, “Terahertz spectroscopy: signatures and fingerprints,” Nat. Photonics 2, 541–543 (2008).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Opt. Commun. (2)

J. Liang, L. Y. Ren, N. N. Chen, and C. H. Zhou, “Broadband, low-loss, dispersion flattened porous-core photonic bandgap fiber for terahertz (THz)-wave propagation,” Opt. Commun. 295, 257–261 (2013).
[CrossRef]

S. Atakaramians, S. A. Vahid, B. M. Fisher, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36–38 (2009).
[CrossRef]

Opt. Express (9)

K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
[CrossRef]

B. Ung, A. Mazhorova, A. Dupuis, M. Rozé, and M. Skorobogatiy, “Polymer microstructured optical fibers for terahertz wave guiding,” Opt. Express 19, B848–B861 (2011).
[CrossRef]

S. E. Kim, B. H. Kim, C. G. Lee, S. Lee, K. Oh, and C. S. Kee, “Elliptical defected core photonic crystal fiber with high birefringence and negative flattened dispersion,” Opt. Express 20, 1385–1391 (2012).
[CrossRef]

S. Atakaramians, S. A. Vahid, H. E. Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
[CrossRef]

H. L. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, “Fabrication and characterization of porous-core honeycomb bandgap THz fibers,” Opt. Express 20, 29507–29517 (2012).
[CrossRef]

S. Atakaramians, S. A. Vahid, B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach for low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
[CrossRef]

N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, “7 GHz resolution waveguide THz spectroscopy of explosives related solids showing new features,” Opt. Express 16, 4094–4105 (2008).
[CrossRef]

J. A. Harrington, R. George, and P. Pedersen, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

Y. F. He, P. I. Ku, J. R. Knab, J. Y. Chen, and A. G. Markelz, “Protein dynamical transition does not require protein structure,” Phys. Rev. Lett. 101, 178103 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Cross section of microstructure Topas fiber.

Fig. 2.
Fig. 2.

Birefringence versus different rotation angles.

Fig. 3.
Fig. 3.

(a)–(c) are the cross sections of microstructure Topas fibers. Clockwise rotate the elliptical holes’ major axis by (a) 15°, (b) 30°, and (c) 45°. (d) is the birefringence as a function of the frequency for different rotating angles in the condition of single mode. The solid line indicates the birefringence without rotating; the dashed–dotted line, dashed line, and dotted line indicate the birefringence corresponding to (a), (b), and (c), respectively. Inset: magnified birefringence segment for the rotation angles of 15° and 45°.

Fig. 4.
Fig. 4.

(a) neff, (b) the V-parameter, and (c) the birefringence properties of the fiber proposed in Fig. 3(b) versus the frequency.

Fig. 5.
Fig. 5.

(a) Effective mode loss and (b) relative mode loss versus the frequency.

Fig. 6.
Fig. 6.

Power distribution fractions of mode power guided in air holes, air cladding, and Topas for both two fundamental orthogonal polarization modes.

Fig. 7.
Fig. 7.

(a) and (b) indicate the power flow distributions of the x- and y-polarization fundamental modes at 1 THz, respectively.

Tables (1)

Tables Icon

Table 1. V-Parameter of Different Rotation Angles at Different Frequencies

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V=2πrfcnco2ncl22.405,
αmod=(ε0/μ0)1/2nαmatmaterial|E|2dARe{z^·allE×H*dA},
η=XSzdAallSzdA,

Metrics