Abstract

We propose dedicated road lighting, which is significantly superior to the existing lighting technologies for the city park and housing estate. This dedicated lighting employs freeform surfaces to effectively control the optical field of the LED source to produce three kinds of illumination modes for the curved road, straight road, and the small public square, respectively, perfectly matching the road conditions of the city park and housing estate. A mathematical model of freeform illumination design is presented to achieve a conceptual design of this road lighting, and a numerical technology for solving this design problem is introduced for the first time, to our knowledge. An illumination model of this conceptual design is constructed. The experimental results of the conceptual design tally closely with the target. This dedicated road lighting, integrated with energy saving, healthy lighting and artistic beauty, provides a beautiful landscape for the city park and the housing estate at night, and will play an important role in improving quality of life of the urban inhabitants.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18, 9055–9063 (2010).
    [CrossRef]
  2. S. Wang, K. Wang, F. Chen, and S. Liu, “Design of primary optics for LED chip array in road lighting application,” Opt. Express 19, A716–A724 (2011).
    [CrossRef]
  3. X. Lee, I. Moreno, and C. Sun, “High-performance LED street lighting using microlens arrays,” Opt. Express 21, 10612–10621 (2013).
    [CrossRef]
  4. P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
    [CrossRef]
  5. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16, 12958–12966 (2008).
    [CrossRef]
  6. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Fast freeform reflector generation using source-target maps,” Opt. Express 18, 5295–5304 (2010).
    [CrossRef]
  7. R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimization design of irradiance array for LED uniform rectangular illumination,” Appl. Opt. 51, 2257–2263 (2012).
    [CrossRef]
  8. S. Magarill, “Skew-faceted elliptical reflector,” Opt. Lett. 36, 532–533 (2011).
    [CrossRef]
  9. D. Michaelis, P. Schreiber, and A. Bräuer, “Cartesian oval representation of freeform optics in illumination systems,” Opt. Lett. 36, 918–920 (2011).
    [CrossRef]
  10. T. Glimm and V. I. Oliker, “Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem,” J. Math. Sci. 117, 4096–4108 (2003).
    [CrossRef]
  11. R. M. Wu, L. Xu, P. Liu, Y. Q. Zhang, Z. R. Zheng, H. F. Li, and X. Liu, “Freeform illumination design: a nonlinear boundary problem for the elliptic Monge–Ampére equation,” Opt. Lett. 38, 229–231 (2013).
    [CrossRef]
  12. C. T. Kelley, Solving Nonlinear Equations with Newton’s Method (Society for Industrial and Applied Mathematics, 2003).

2013

2012

2011

2010

2008

2004

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

2003

T. Glimm and V. I. Oliker, “Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem,” J. Math. Sci. 117, 4096–4108 (2003).
[CrossRef]

Benítez, P.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Blen, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Bräuer, A.

Cassarly, W. J.

Chaves, J.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Chen, F.

Ding, Y.

Dross, O.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Falicoff, W.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Feng, Z. X.

Fournier, F. R.

Glimm, T.

T. Glimm and V. I. Oliker, “Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem,” J. Math. Sci. 117, 4096–4108 (2003).
[CrossRef]

Gu, P. F.

Han, Y. J.

Hernández, M.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Kelley, C. T.

C. T. Kelley, Solving Nonlinear Equations with Newton’s Method (Society for Industrial and Applied Mathematics, 2003).

Lee, X.

Li, H. F.

Li, H. T.

Liu, P.

Liu, S.

Liu, X.

Luo, Y.

Magarill, S.

Michaelis, D.

Miñano, J. C.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Mohedano, R.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Moreno, I.

Oliker, V. I.

T. Glimm and V. I. Oliker, “Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem,” J. Math. Sci. 117, 4096–4108 (2003).
[CrossRef]

Rolland, J. P.

Schreiber, P.

Sun, C.

Wang, K.

Wang, S.

Wu, R. M.

Xu, L.

Zhang, Y. Q.

Zheng, Z. R.

Appl. Opt.

J. Math. Sci.

T. Glimm and V. I. Oliker, “Optical design of single reflector systems and the Monge-Kantorovich mass transfer problem,” J. Math. Sci. 117, 4096–4108 (2003).
[CrossRef]

Opt. Eng.

P. Benítez, J. C. Miñano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43, 1489–1502 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Other

C. T. Kelley, Solving Nonlinear Equations with Newton’s Method (Society for Industrial and Applied Mathematics, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Road lighting that produces a uniform rectangular illumination pattern is used in (a) a city street and (b) a city park, respectively. The illumination pattern can match the roadway of the city street perfectly, but there might be some blind areas on the curved road of the city park due to the slight bend.

Fig. 2.
Fig. 2.

Schematic illustration of the dedicated LED road lighting.

Fig. 3.
Fig. 3.

Design process of this conceptual design.

Fig. 4.
Fig. 4.

Geometrical design layout of the lens.

Fig. 5.
Fig. 5.

Discretization of the domain Ω.

Fig. 6.
Fig. 6.

Design of the curved road lighting. (a) The target illumination, (b) the model of the freeform lens, and (c) the irradiance distribution obtained from the simulation.

Fig. 7.
Fig. 7.

Irradiance distribution along the line x=0mm. The red solid line represents the simulation result, and the blue dashed line represents the target.

Fig. 8.
Fig. 8.

Results of the trimmed lens. (a) The simulation result, (b) the experimental result, and (c) the pseudocolor plot of the experimental result.

Fig. 9.
Fig. 9.

Fabricated freeform lenses. These lenses are very compact.

Fig. 10.
Fig. 10.

Experimental results of (a) the straight road and (b) the small public square.

Fig. 11.
Fig. 11.

Aerial view of the illumination model of the dedicated road lighting.

Tables (1)

Tables Icon

Table 1. Design Parameters of the Conceptual Designa

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

N=(Pφ×Pθ)/|Pφ×Pθ|,
x=Px+(LPz)niIx+P1NxniIz+P1Nz,y=Py+(LPz)niIy+P1NyniIz+P1Nz,
dxdy=|J(T)|dθdφ,
E(x,y)|J(T)|=I(θ,φ)sinφ,
{A1(ρθθρφφρθφ2)+A2ρφφ+A3ρθθ+A4ρθφ+A5=0BC:{x=x(θ,φ,ρ,ρθ,ρφ)y=y(θ,φ,ρ,ρθ,ρφ):ΩR,
{ρθ=ρi+1,jρi1,j2h1,ρθθ=ρi+1,j2ρi,j+ρi1,jh12ρφ=ρi,j+1ρi,j12h2,ρφφ=ρi,j+12ρi,j+ρi,j1h22ρθφ=ρi+1,j+1ρi+1,j1ρi1,j+1+ρi1,j14h1h2.
x2+y2=rmax2,
ρθ=ρi+1,nρi1,n2h1,ρφ=3ρi,nρi,n1+ρi,n22h2.
ρi,0=H,ρφi,0=0,
F(X)=0.
F(X¯)+F(X¯)(XX¯)=0,
F(Xk)+F(Xk)(Xk+1Xk)=0.

Metrics