Abstract

We investigate the lateral variations of photocurrent on CdS/Al interfaces, with a combination of a semiconductor characterization system and scanning near-field optical microscopy, in which the near-field probe is used to locally induce photocurrent on the CdS/Al interfaces with high spatial resolution. By analyzing the spatially resolved photoresponse, we find that the resolution is worsened in the photocurrent images by the lateral diffusion of the photoexcited electrons and that the photoelectric properties of the CdS/Al interfaces are strongly affected by the bias voltage. Furthermore, in a complementary experiment, we also demonstrate that the photocurrent measurements can reveal structures that are not present in the case of shear-force data. The analysis demonstrates the band structure and microscopic mechanism of CdS/Al heterostructures, which provide an effective approach for developing CdS-based photoelectronic devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Dag and L. W. Wang, “Atomic and electronic structures of nano- and amorphous CdS/Pt interfaces,” Phys. Rev. B 82, 241303 (2010).
    [CrossRef]
  2. M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
    [CrossRef]
  3. B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
    [CrossRef]
  4. P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
    [CrossRef]
  5. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
    [CrossRef]
  6. H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
    [CrossRef]
  7. C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
    [CrossRef]
  8. E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
    [CrossRef]
  9. J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
    [CrossRef]
  10. T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
    [CrossRef]
  11. D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
    [CrossRef]
  12. M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
    [CrossRef]
  13. C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
    [CrossRef]
  14. N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
    [CrossRef]
  15. G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
    [CrossRef]
  16. S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
    [CrossRef]
  17. A. Zayats and D. Richards, Nano-Optics and Near-Field Optical Microscopy (Artech House, 2009).
  18. A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
    [CrossRef]
  19. A. A. M. Farag, I. S. Yahia, and M. Fadel, “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode,” Int. J. Hydrogen Energy 34, 4906–4913 (2009).
    [CrossRef]
  20. M. Razeghi, Fundamentals of Solid State Engineering, 3rd ed. (Springer, 2009).
  21. NT-MDT, Solver SNOM Scanning Near-Field Optical Microscope Instruction Manual (NT-MDT, 2007).

2013 (5)

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

2011 (1)

G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
[CrossRef]

2010 (1)

S. Dag and L. W. Wang, “Atomic and electronic structures of nano- and amorphous CdS/Pt interfaces,” Phys. Rev. B 82, 241303 (2010).
[CrossRef]

2009 (2)

A. A. M. Farag, I. S. Yahia, and M. Fadel, “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode,” Int. J. Hydrogen Energy 34, 4906–4913 (2009).
[CrossRef]

T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
[CrossRef]

2001 (1)

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
[CrossRef]

2000 (1)

D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
[CrossRef]

1999 (2)

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
[CrossRef]

1997 (1)

A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

1996 (2)

J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
[CrossRef]

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

1995 (1)

M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

1994 (1)

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Almeida, J.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
[CrossRef]

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Avouris, Ph.

T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
[CrossRef]

Bagiante, S.

G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
[CrossRef]

Bahr, C. C.

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Balasubramanian, K.

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

Bandgar, D. K.

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Barbo, F.

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Barkelid, M.

G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
[CrossRef]

Bergossi, O.

J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
[CrossRef]

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Bertolo, M.

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Betzig, E.

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Bianco, A.

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Bouaoud, A.

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

Buchs, G.

G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
[CrossRef]

Buratto, S. K.

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Burghard, M.

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

Bylsma, R. B.

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Carcenac, F.

D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
[CrossRef]

Cardillo, M. J.

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Cerasari, S.

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Chang, C. S.

N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
[CrossRef]

Chen, Y.

D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
[CrossRef]

Chougule, M. A.

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Chtouki, T.

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

Claudio, G. D.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

Coluzza, C.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
[CrossRef]

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Conforto, E.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

Courjon, D.

D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
[CrossRef]

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Cricenti, A.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

Dag, S.

S. Dag and L. W. Wang, “Atomic and electronic structures of nano- and amorphous CdS/Pt interfaces,” Phys. Rev. B 82, 241303 (2010).
[CrossRef]

Davy, S.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

dell’Orto, T.

J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
[CrossRef]

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Dufaux, T.

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

Elidrissi, B.

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

Erguig, H.

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

Fadel, M.

A. A. M. Farag, I. S. Yahia, and M. Fadel, “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode,” Int. J. Hydrogen Energy 34, 4906–4913 (2009).
[CrossRef]

Faini, G.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

Farag, A. A. M.

A. A. M. Farag, I. S. Yahia, and M. Fadel, “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode,” Int. J. Hydrogen Energy 34, 4906–4913 (2009).
[CrossRef]

Fontana, S.

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Freitag, M.

T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
[CrossRef]

Gao, S.

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

Generosi, R.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

Gilic, M.

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

Godse, P. R.

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Goldberg, B. B.

M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Herzog, W. D.

M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Hsu, J. W. P.

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Ji, W.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
[CrossRef]

Kam, C. H.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
[CrossRef]

Kern, K.

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

Lam, Y. L.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
[CrossRef]

Li, H. P.

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
[CrossRef]

Li, P.

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

Lian, J.

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

Louardi, A.

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

Lu, N. H.

N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
[CrossRef]

Margaritondo, G.

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
[CrossRef]

Mueller, T.

T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
[CrossRef]

Mulin, D.

D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
[CrossRef]

Ouachtari, F.

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

Patil, V. B.

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Pawar, S. G.

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Rauschenbach, S.

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

Raut, B. T.

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Razeghi, M.

M. Razeghi, Fundamentals of Solid State Engineering, 3rd ed. (Springer, 2009).

Ren, M. J.

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

Richards, D.

A. Zayats and D. Richards, Nano-Optics and Near-Field Optical Microscopy (Artech House, 2009).

Rmili, A.

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

Romcevic, M.

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

Romcevic, N.

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

Ruiter, A. G. T.

A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

Sagar, A.

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

Sen, S.

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Spajer, M.

D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
[CrossRef]

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Stanisic, G.

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

Steele, G. A.

G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
[CrossRef]

Stutzel, E. U.

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

Sun, D.

M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Timotijevic, D. V.

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

Towe, E.

M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

Trajic, J.

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

Trautman, J. K.

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

Tsai, D. P.

N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
[CrossRef]

Tsang, J.

T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
[CrossRef]

Tsong, T. T.

N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

van der Werf, K. O.

A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

van Hulst, N. F.

A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

Veerman, J. A.

A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

Wang, L. W.

S. Dag and L. W. Wang, “Atomic and electronic structures of nano- and amorphous CdS/Pt interfaces,” Phys. Rev. B 82, 241303 (2010).
[CrossRef]

Wang, P. J.

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

Xia, F.

T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
[CrossRef]

Yahia, I. S.

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

A. A. M. Farag, I. S. Yahia, and M. Fadel, “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode,” Int. J. Hydrogen Energy 34, 4906–4913 (2009).
[CrossRef]

Yi, C.

N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
[CrossRef]

Yu, X. H.

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

Zayats, A.

A. Zayats and D. Richards, Nano-Optics and Near-Field Optical Microscopy (Artech House, 2009).

Zhang, C. W.

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

Zwiller, V.

G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
[CrossRef]

Appl. Phys. Lett. (6)

E. U. Stutzel, T. Dufaux, A. Sagar, S. Rauschenbach, K. Balasubramanian, M. Burghard, and K. Kern, “Spatially resolved photocurrents in graphene nanoribbon devices,” Appl. Phys. Lett. 102, 043106 (2013).
[CrossRef]

J. Almeida, T. dell’Orto, C. Coluzza, G. Margaritondo, and O. Bergossi, “Novel spectromicroscopy: Pt-GaP studies by spatially resolved internal photoemission with nearfield optics,” Appl. Phys. Lett. 69, 2361 (1996).
[CrossRef]

M. S. Ünlü, B. B. Goldberg, W. D. Herzog, D. Sun, and E. Towe, “Near-field optical beam induced current measurements on heterostructures,” Appl. Phys. Lett. 67, 1862–1864 (1995).
[CrossRef]

N. H. Lu, D. P. Tsai, C. Yi, C. S. Chang, and T. T. Tsong, “Optical characterization of visible multiquantum-well semiconductor lasers by collection/excitation modes of scanning near-field optical microscopy,” Appl. Phys. Lett. 74, 2746–2748 (1999).
[CrossRef]

S. K. Buratto, J. W. P. Hsu, E. Betzig, J. K. Trautman, R. B. Bylsma, C. C. Bahr, and M. J. Cardillo, “Near-field photoconductivity: application to carrier transport in InGaAsP quantum well lasers,” Appl. Phys. Lett. 65, 2654–2656 (1994).
[CrossRef]

A. G. T. Ruiter, J. A. Veerman, K. O. van der Werf, and N. F. van Hulst, “Dynamic behavior of tuning fork shear-force feedback,” Appl. Phys. Lett. 71, 28–30 (1997).
[CrossRef]

Appl. Surf. Sci. (1)

C. Coluzza, J. Almeida, T. dell’Orto, F. Barbo, M. Bertolo, A. Bianco, S. Cerasari, S. Fontana, O. Bergossi, M. Spajer, and D. Courjon, “Spatially resolved internal and external photoemission of Pt/n-GaP Schottky barrier,” Appl. Surf. Sci. 104/105, 196–203 (1996).
[CrossRef]

Int. J. Hydrogen Energy (1)

A. A. M. Farag, I. S. Yahia, and M. Fadel, “Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode,” Int. J. Hydrogen Energy 34, 4906–4913 (2009).
[CrossRef]

J. Alloys Compd. (1)

A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, and H. Erguig, “Structural, optical and electrical properties of Ni-doped CdS thin films prepared by spray pyrolysis,” J. Alloys Compd. 557, 53–59 (2013).
[CrossRef]

J. Appl. Phys. (2)

D. Mulin, M. Spajer, D. Courjon, F. Carcenac, and Y. Chen, “Near-field probing control of optical propagation in bidimensional guiding mesostructures,” J. Appl. Phys. 87, 534–537 (2000).
[CrossRef]

G. Buchs, M. Barkelid, S. Bagiante, G. A. Steele, and V. Zwiller, “Imaging the formation of a p-n junction in a suspended carbon nanotube with scanning photocurrent microscopy,” J. Appl. Phys. 110, 074308 (2011).
[CrossRef]

J. Microsc. (1)

C. Coluzza, G. D. Claudio, S. Davy, M. Spajer, D. Courjon, A. Cricenti, R. Generosi, G. Faini, J. Almeida, E. Conforto, and G. Margaritondo, “Photocurrent near-field microscopy of Schottky barriers,” J. Microsc. 194, 401–406 (1999).
[CrossRef]

J. Phys. Chem. Solids (1)

B. T. Raut, P. R. Godse, S. G. Pawar, M. A. Chougule, D. K. Bandgar, S. Sen, and V. B. Patil, “New process for fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic investigations,” J. Phys. Chem. Solids 74, 236–244 (2013).
[CrossRef]

Opt. Commun. (2)

P. Li, C. W. Zhang, J. Lian, M. J. Ren, P. J. Wang, X. H. Yu, and S. Gao, “First-principle study of optical properties of Cu-doped CdS,” Opt. Commun. 295, 45–52 (2013).
[CrossRef]

H. P. Li, C. H. Kam, Y. L. Lam, and W. Ji, “Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm,” Opt. Commun. 190, 351–356 (2001).
[CrossRef]

Opt. Mater. (1)

M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D. V. Timotijevic, G. Stanisic, and I. S. Yahia, “Optical properties of CdS thin films,” Opt. Mater. 35, 1112–1117 (2013).
[CrossRef]

Phys. Rev. B (2)

S. Dag and L. W. Wang, “Atomic and electronic structures of nano- and amorphous CdS/Pt interfaces,” Phys. Rev. B 82, 241303 (2010).
[CrossRef]

T. Mueller, F. Xia, M. Freitag, J. Tsang, and Ph. Avouris, “Role of contacts in graphene transistors: a scanning photocurrent study,” Phys. Rev. B 79, 245430 (2009).
[CrossRef]

Other (3)

A. Zayats and D. Richards, Nano-Optics and Near-Field Optical Microscopy (Artech House, 2009).

M. Razeghi, Fundamentals of Solid State Engineering, 3rd ed. (Springer, 2009).

NT-MDT, Solver SNOM Scanning Near-Field Optical Microscope Instruction Manual (NT-MDT, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic illustration of the experimental setup and the sample structure.

Fig. 2.
Fig. 2.

(a), (c) Shear-force topographic images and (b), (d) corresponding photocurrent images in constant-distance mode.

Fig. 3.
Fig. 3.

Topographic and photocurrent profiles along dashed lines (a) AA (blue squares), BB (black squares), and (b) CC (blue squares), and DD (black squares) in Fig. 2. Red curves are the numerical fitting of the profile data.

Fig. 4.
Fig. 4.

Band diagrams at (a) VDS=0 and (b) VDS>0.

Fig. 5.
Fig. 5.

(a) Shear-force topography image, (b) reflection mode image, and (c) corresponding photocurrent image in constant-distance mode.

Metrics