Abstract

An infrared (IR) dual band multi-element detector with the abilities of dual band IR counter–countermeasure (IRCCM) and spatial filtering is presented for effective target detection in a complex tactical environment. The detection elements of the detector are specially arranged like a conventional reticle pattern. With special design, the ratio of radiation intensity from two IR bands can be calculated to distinguish the target from the IR target-flare mixed signal and the two detection bands use a common aperture in the seeker. Without a reticle in the optical system of the IR seeker, the dual band detector can still perform spatial filtering to eliminate background noise effectively. The design details of the detector are presented. The performance of the detector’s dual band IRCCM and spatial filtering are analyzed. Simulation results are presented verifying validity of the presented method.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Taylor and R. G. Driggers, “Tracking with two frequency-modulated reticles,” Opt. Eng. 32, 1101–1104 (1993).
    [CrossRef]
  2. R. G. Driggers, C. E. Halford, and G. D. Boreman, “Marriage of frequency modulation reticles to focal plane arrays,” Opt. Eng. 30, 1516–1521 (1991).
    [CrossRef]
  3. H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of an improved reticle seeker using the segmented focal plane array,” Opt. Eng. 36, 883–888 (1997).
  4. J. S. Oh, S. H. Lee, J. T. Kim, and J. S. Choi, “Two-color infrared counter-countermeasure based on the signal ratio between two detection bands for a crossed-array tracker,” Opt. Eng. 44, 096401 (2005).
  5. J. Heikell, “Electronic warfare self-protection of battlefield helicopters: a holistic view,” Helsinki University of Technology, Appl. Electron. Lab. Series E: Electron. Pub. E18, Espoo (2005).
  6. W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).
  7. C. Deyerle, “Advanced infrared missile counter-countermeasures,” J. Electron. Defense 17, 47 (1994).
  8. H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of the spinning concentric annular ring reticle seeker and an efficient counter–countermeasure,” Opt. Eng. 36, 3206–3211 (1997).
    [CrossRef]
  9. L. M. Biberman, Reticles in Electro-Optical Devices (Pergamon, 1966).
  10. C. Santoro, R. Hayes, and J. Herman, “Brushless slip ring for high power transmission,” presented at the AiAA SPACE Conference & Exposition, Pasadena, California, 2009.
  11. V. Peter Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 5th ed. (McGraw-Hill, 2004).
  12. J. Lane, P. Buchsbaum, and J. Eichenholz, “Micro lithographically patterned optical thin film coatings,” Proc. SPIE 7205, 72050G (2009).
    [CrossRef]
  13. R. O. Carpenter, “Comparison of AM and FM reticle systems,” Appl. Opt. 2, 229–236 (1963).
    [CrossRef]
  14. R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. Williams, “Parameters of spinning FM reticles,” Appl. Opt. 30, 887–895 (1991).
    [CrossRef]
  15. G. Olsson, “Simulation of reticle systems by means of an image processing system,” Opt. Eng. 33, 730–736 (1994).
    [CrossRef]
  16. R. D. Hudson, Infrared System Engineering (Wiley, 1969).

2009 (1)

J. Lane, P. Buchsbaum, and J. Eichenholz, “Micro lithographically patterned optical thin film coatings,” Proc. SPIE 7205, 72050G (2009).
[CrossRef]

2005 (1)

J. S. Oh, S. H. Lee, J. T. Kim, and J. S. Choi, “Two-color infrared counter-countermeasure based on the signal ratio between two detection bands for a crossed-array tracker,” Opt. Eng. 44, 096401 (2005).

2002 (1)

W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).

1997 (2)

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of an improved reticle seeker using the segmented focal plane array,” Opt. Eng. 36, 883–888 (1997).

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of the spinning concentric annular ring reticle seeker and an efficient counter–countermeasure,” Opt. Eng. 36, 3206–3211 (1997).
[CrossRef]

1994 (2)

G. Olsson, “Simulation of reticle systems by means of an image processing system,” Opt. Eng. 33, 730–736 (1994).
[CrossRef]

C. Deyerle, “Advanced infrared missile counter-countermeasures,” J. Electron. Defense 17, 47 (1994).

1993 (1)

J. S. Taylor and R. G. Driggers, “Tracking with two frequency-modulated reticles,” Opt. Eng. 32, 1101–1104 (1993).
[CrossRef]

1991 (2)

R. G. Driggers, C. E. Halford, and G. D. Boreman, “Marriage of frequency modulation reticles to focal plane arrays,” Opt. Eng. 30, 1516–1521 (1991).
[CrossRef]

R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. Williams, “Parameters of spinning FM reticles,” Appl. Opt. 30, 887–895 (1991).
[CrossRef]

1963 (1)

Biberman, L. M.

L. M. Biberman, Reticles in Electro-Optical Devices (Pergamon, 1966).

Boreman, G. D.

R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. Williams, “Parameters of spinning FM reticles,” Appl. Opt. 30, 887–895 (1991).
[CrossRef]

R. G. Driggers, C. E. Halford, and G. D. Boreman, “Marriage of frequency modulation reticles to focal plane arrays,” Opt. Eng. 30, 1516–1521 (1991).
[CrossRef]

Breiter, R.

W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).

Buchsbaum, P.

J. Lane, P. Buchsbaum, and J. Eichenholz, “Micro lithographically patterned optical thin film coatings,” Proc. SPIE 7205, 72050G (2009).
[CrossRef]

Cabanski, W.

W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).

Carpenter, R. O.

Choi, J. S.

J. S. Oh, S. H. Lee, J. T. Kim, and J. S. Choi, “Two-color infrared counter-countermeasure based on the signal ratio between two detection bands for a crossed-array tracker,” Opt. Eng. 44, 096401 (2005).

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of an improved reticle seeker using the segmented focal plane array,” Opt. Eng. 36, 883–888 (1997).

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of the spinning concentric annular ring reticle seeker and an efficient counter–countermeasure,” Opt. Eng. 36, 3206–3211 (1997).
[CrossRef]

Deyerle, C.

C. Deyerle, “Advanced infrared missile counter-countermeasures,” J. Electron. Defense 17, 47 (1994).

Driggers, R. G.

J. S. Taylor and R. G. Driggers, “Tracking with two frequency-modulated reticles,” Opt. Eng. 32, 1101–1104 (1993).
[CrossRef]

R. G. Driggers, C. E. Halford, and G. D. Boreman, “Marriage of frequency modulation reticles to focal plane arrays,” Opt. Eng. 30, 1516–1521 (1991).
[CrossRef]

R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. Williams, “Parameters of spinning FM reticles,” Appl. Opt. 30, 887–895 (1991).
[CrossRef]

Eichenholz, J.

J. Lane, P. Buchsbaum, and J. Eichenholz, “Micro lithographically patterned optical thin film coatings,” Proc. SPIE 7205, 72050G (2009).
[CrossRef]

Halford, C. E.

R. G. Driggers, C. E. Halford, G. D. Boreman, D. Lattman, and K. Williams, “Parameters of spinning FM reticles,” Appl. Opt. 30, 887–895 (1991).
[CrossRef]

R. G. Driggers, C. E. Halford, and G. D. Boreman, “Marriage of frequency modulation reticles to focal plane arrays,” Opt. Eng. 30, 1516–1521 (1991).
[CrossRef]

Han, S. H.

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of an improved reticle seeker using the segmented focal plane array,” Opt. Eng. 36, 883–888 (1997).

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of the spinning concentric annular ring reticle seeker and an efficient counter–countermeasure,” Opt. Eng. 36, 3206–3211 (1997).
[CrossRef]

Hayes, R.

C. Santoro, R. Hayes, and J. Herman, “Brushless slip ring for high power transmission,” presented at the AiAA SPACE Conference & Exposition, Pasadena, California, 2009.

Heikell, J.

J. Heikell, “Electronic warfare self-protection of battlefield helicopters: a holistic view,” Helsinki University of Technology, Appl. Electron. Lab. Series E: Electron. Pub. E18, Espoo (2005).

Herman, J.

C. Santoro, R. Hayes, and J. Herman, “Brushless slip ring for high power transmission,” presented at the AiAA SPACE Conference & Exposition, Pasadena, California, 2009.

Hong, H. K.

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of the spinning concentric annular ring reticle seeker and an efficient counter–countermeasure,” Opt. Eng. 36, 3206–3211 (1997).
[CrossRef]

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of an improved reticle seeker using the segmented focal plane array,” Opt. Eng. 36, 883–888 (1997).

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, 1969).

Kim, J. T.

J. S. Oh, S. H. Lee, J. T. Kim, and J. S. Choi, “Two-color infrared counter-countermeasure based on the signal ratio between two detection bands for a crossed-array tracker,” Opt. Eng. 44, 096401 (2005).

Lane, J.

J. Lane, P. Buchsbaum, and J. Eichenholz, “Micro lithographically patterned optical thin film coatings,” Proc. SPIE 7205, 72050G (2009).
[CrossRef]

Lattman, D.

Lee, S. H.

J. S. Oh, S. H. Lee, J. T. Kim, and J. S. Choi, “Two-color infrared counter-countermeasure based on the signal ratio between two detection bands for a crossed-array tracker,” Opt. Eng. 44, 096401 (2005).

Mauk, K. H.

W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).

Oh, J. S.

J. S. Oh, S. H. Lee, J. T. Kim, and J. S. Choi, “Two-color infrared counter-countermeasure based on the signal ratio between two detection bands for a crossed-array tracker,” Opt. Eng. 44, 096401 (2005).

Olsson, G.

G. Olsson, “Simulation of reticle systems by means of an image processing system,” Opt. Eng. 33, 730–736 (1994).
[CrossRef]

Peter Zant, V.

V. Peter Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 5th ed. (McGraw-Hill, 2004).

Rode, W.

W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).

Santoro, C.

C. Santoro, R. Hayes, and J. Herman, “Brushless slip ring for high power transmission,” presented at the AiAA SPACE Conference & Exposition, Pasadena, California, 2009.

Taylor, J. S.

J. S. Taylor and R. G. Driggers, “Tracking with two frequency-modulated reticles,” Opt. Eng. 32, 1101–1104 (1993).
[CrossRef]

Williams, K.

Ziegler, J.

W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).

Appl. Opt. (2)

J. Electron. Defense (1)

C. Deyerle, “Advanced infrared missile counter-countermeasures,” J. Electron. Defense 17, 47 (1994).

Opt. Eng. (6)

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of the spinning concentric annular ring reticle seeker and an efficient counter–countermeasure,” Opt. Eng. 36, 3206–3211 (1997).
[CrossRef]

J. S. Taylor and R. G. Driggers, “Tracking with two frequency-modulated reticles,” Opt. Eng. 32, 1101–1104 (1993).
[CrossRef]

R. G. Driggers, C. E. Halford, and G. D. Boreman, “Marriage of frequency modulation reticles to focal plane arrays,” Opt. Eng. 30, 1516–1521 (1991).
[CrossRef]

H. K. Hong, S. H. Han, and J. S. Choi, “Simulation of an improved reticle seeker using the segmented focal plane array,” Opt. Eng. 36, 883–888 (1997).

J. S. Oh, S. H. Lee, J. T. Kim, and J. S. Choi, “Two-color infrared counter-countermeasure based on the signal ratio between two detection bands for a crossed-array tracker,” Opt. Eng. 44, 096401 (2005).

G. Olsson, “Simulation of reticle systems by means of an image processing system,” Opt. Eng. 33, 730–736 (1994).
[CrossRef]

Proc. SPIE (1)

J. Lane, P. Buchsbaum, and J. Eichenholz, “Micro lithographically patterned optical thin film coatings,” Proc. SPIE 7205, 72050G (2009).
[CrossRef]

Proc. SPIE AeroSense (1)

W. Cabanski, R. Breiter, K. H. Mauk, W. Rode, and J. Ziegler, “Broadband and dual color high speed MCT MWIR modules,” Proc. SPIE AeroSense 4721, 174–183 (2002).

Other (5)

R. D. Hudson, Infrared System Engineering (Wiley, 1969).

J. Heikell, “Electronic warfare self-protection of battlefield helicopters: a holistic view,” Helsinki University of Technology, Appl. Electron. Lab. Series E: Electron. Pub. E18, Espoo (2005).

L. M. Biberman, Reticles in Electro-Optical Devices (Pergamon, 1966).

C. Santoro, R. Hayes, and J. Herman, “Brushless slip ring for high power transmission,” presented at the AiAA SPACE Conference & Exposition, Pasadena, California, 2009.

V. Peter Zant, Microchip Fabrication: A Practical Guide to Semiconductor Processing, 5th ed. (McGraw-Hill, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Conventional optical reticle. (b) Single element detector used in reticle seeker. (c) Layout of spin-scan reticle seeker.

Fig. 2.
Fig. 2.

Output signals of optical reticle seeker for target spot and huge background spot, respectively.

Fig. 3.
Fig. 3.

(a) Detection elements of crossed intersection detector. (b) Layout of con-scan IR seeker.

Fig. 4.
Fig. 4.

(a) Dual band IR bandpass filter film of the presented detector. (b) Photosensitive area of the presented detector chip. (c) Layout of IR seeker with the presented multi-element photodetector.

Fig. 5.
Fig. 5.

Slice section of the presented detector.

Fig. 6.
Fig. 6.

(a) IR target spots spinning on detector. (b) Output pulse of MWIR detection elements generated by spot “a.”

Fig. 7.
Fig. 7.

Output signals of the presented detector and the four element detector according to changes of spot size. (a), (b) Respective detector output signals of the presented detector for target spot and huge background spot. (d), (e) Respective detector output signals of the four elements detector for target spot and huge background spot. (c), (f) Respective detector output signals of the presented detector and the four elements detector in case target and huge background noise are located simultaneously within the FOV.

Fig. 8.
Fig. 8.

Dual-band detector output signal. (a) 600 K target and (b) 2000 K flare.

Fig. 9.
Fig. 9.

(a) Target and flare scan on the four elements detector. (c) Target and flare scan on the presented detector. (b), (d) Respective output signals of the four elements detector and the presented detector in case target signal and IR flare are located simultaneously within the FOV of the detectors.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Mλ1λ2=ελ1λ22πhc2λ5(ehc/λkT1)dλ,
K=Mλ1λ2Mλ3λ4,
f(t)={Mλ1λ2K>τ0Kτ.

Metrics