Abstract

An irradiance mode, absolute differential spectral response measurement system for solar cells is presented. The system is based on combining the monochromator-based approach of determining the power mode spectral responsivity of cells with an LED-based measurement to construct a curve representing the light-overfilled absolute spectral response of the entire cell. This curve can be used to predict the short-circuit current (Isc) of the cell under the AM 1.5 standard reference spectrum. The measurement system is SI-traceable via detectors with primary calibrations linked to the NIST absolute cryogenic radiometer. An uncertainty analysis of the methodology places the relative uncertainty of the calculated Isc at better than ±0.8%.

© 2013 USG

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “Standard test method for spectral responsivity measurements of photovoltaic devices,” ASTM Standard E1021-12 (2012), pp. 502–511.
  2. K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, 1983).
  3. J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
    [CrossRef]
  4. S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of the 16th European Photovoltaic Solar Energy Conference (2000), pp. 1–4.
  5. L. Boivin, W. Budde, C. Dodd, and S. Das, “Spectral response measurement apparatus for large area solar cells,” Appl. Opt. 25, 2715–2719 (1986).
    [CrossRef]
  6. J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Solar Cells 7, 147–157 (1982).
    [CrossRef]
  7. J. Metzdorf, “Calibration of solar cells. 1: the differential spectral responsivity method,” Appl. Opt. 26, 1701–1708 (1987).
    [CrossRef]
  8. J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
    [CrossRef]
  9. G. Xu and X. Huang, “Primary calibration of solar photovoltaic cells at the National Metrology Centre of Singapore,” Energy Procedia 25, 70–75 (2012).
    [CrossRef]
  10. K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
    [CrossRef]
  11. R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.
  12. S. Silvestre, L. Sentis, and L. Castaner, “A fast low-cost solar cell spectral response measurement system with accuracy indicator,” IEEE Trans. Instrum. Meas. 48, 944–948 (1999).
    [CrossRef]
  13. S. W. Brown, G. P. Eppeldauer, and K. R. Lykke, “Facility for spectral irradiance and radiance responsivity calibrations using uniform sources,” Appl. Opt. 45, 8218–8237 (2006).
    [CrossRef]
  14. B. H. Hamadani, J. Roller, B. Dougherty, and H. W. Yoon, “Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization,” Appl. Opt. 51, 4469–4476 (2012).
    [CrossRef]
  15. F. C. Krebs, K. O. Sylvester-Hvid, and M. Jørgensen, “A self-calibrating LED-based solar test platform,” Prog. Photovolt. Res. Appl. 19, 97–112 (2011).
    [CrossRef]
  16. G. Zaid, S.-N. Park, S. Park, and D.-H. Lee, “Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source,” Appl. Opt. 49, 6772–6783 (2010).
    [CrossRef]
  17. J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
    [CrossRef]
  18. H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 1997 (1997), pp. 471–474.
  19. T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41 (National Institute of Standards and Technology, 2008).
  20. “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” ASTM Standard G173-03 (2012).
  21. Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

2013 (1)

J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
[CrossRef]

2012 (2)

G. Xu and X. Huang, “Primary calibration of solar photovoltaic cells at the National Metrology Centre of Singapore,” Energy Procedia 25, 70–75 (2012).
[CrossRef]

B. H. Hamadani, J. Roller, B. Dougherty, and H. W. Yoon, “Versatile light-emitting-diode-based spectral response measurement system for photovoltaic device characterization,” Appl. Opt. 51, 4469–4476 (2012).
[CrossRef]

2011 (1)

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jørgensen, “A self-calibrating LED-based solar test platform,” Prog. Photovolt. Res. Appl. 19, 97–112 (2011).
[CrossRef]

2010 (1)

2006 (1)

2004 (1)

K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
[CrossRef]

2000 (1)

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

1999 (1)

S. Silvestre, L. Sentis, and L. Castaner, “A fast low-cost solar cell spectral response measurement system with accuracy indicator,” IEEE Trans. Instrum. Meas. 48, 944–948 (1999).
[CrossRef]

1987 (1)

1986 (1)

1982 (1)

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Solar Cells 7, 147–157 (1982).
[CrossRef]

1977 (1)

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Alberte, C.

J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
[CrossRef]

Andreu, J.

J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
[CrossRef]

Assalone, D.

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Bachmann, K. J.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Bilir, T.

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Boivin, L.

Brown, S. W.

Budde, W.

Buehler, E.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Castaner, L.

S. Silvestre, L. Sentis, and L. Castaner, “A fast low-cost solar cell spectral response measurement system with accuracy indicator,” IEEE Trans. Instrum. Meas. 48, 944–948 (1999).
[CrossRef]

Chopra, K. L.

K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, 1983).

Ciocan, E.

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Ciocan, R.

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Das, S.

Das, S. R.

K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, 1983).

Dodd, C.

Dougherty, B.

Emery, K.

K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
[CrossRef]

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Eppeldauer, G. P.

Epworth, R. W.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Field, H.

H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 1997 (1997), pp. 471–474.

Fortes, M.

J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
[CrossRef]

Hamadani, B. H.

Han, D.

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Hartman, J. S.

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Solar Cells 7, 147–157 (1982).
[CrossRef]

Houston, J. M.

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41 (National Institute of Standards and Technology, 2008).

Huang, X.

G. Xu and X. Huang, “Primary calibration of solar photovoltaic cells at the National Metrology Centre of Singapore,” Energy Procedia 25, 70–75 (2012).
[CrossRef]

Jørgensen, M.

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jørgensen, “A self-calibrating LED-based solar test platform,” Prog. Photovolt. Res. Appl. 19, 97–112 (2011).
[CrossRef]

Krebs, F. C.

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jørgensen, “A self-calibrating LED-based solar test platform,” Prog. Photovolt. Res. Appl. 19, 97–112 (2011).
[CrossRef]

Larason, T. C.

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41 (National Institute of Standards and Technology, 2008).

Lee, D.-H.

Li, Z.

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Lind, M. A.

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Solar Cells 7, 147–157 (1982).
[CrossRef]

Lykke, K. R.

Metzdorf, J.

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

J. Metzdorf, “Calibration of solar cells. 1: the differential spectral responsivity method,” Appl. Opt. 26, 1701–1708 (1987).
[CrossRef]

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of the 16th European Photovoltaic Solar Energy Conference (2000), pp. 1–4.

Park, S.

Park, S.-N.

Rodríguez, J. A.

J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
[CrossRef]

Roller, J.

Sentis, L.

S. Silvestre, L. Sentis, and L. Castaner, “A fast low-cost solar cell spectral response measurement system with accuracy indicator,” IEEE Trans. Instrum. Meas. 48, 944–948 (1999).
[CrossRef]

Shay, J. L.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Silvestre, S.

S. Silvestre, L. Sentis, and L. Castaner, “A fast low-cost solar cell spectral response measurement system with accuracy indicator,” IEEE Trans. Instrum. Meas. 48, 944–948 (1999).
[CrossRef]

Sylvester-Hvid, K. O.

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jørgensen, “A self-calibrating LED-based solar test platform,” Prog. Photovolt. Res. Appl. 19, 97–112 (2011).
[CrossRef]

Vetter, M.

J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
[CrossRef]

Wagner, S.

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Winter, S.

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of the 16th European Photovoltaic Solar Energy Conference (2000), pp. 1–4.

Wittchen, T.

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of the 16th European Photovoltaic Solar Energy Conference (2000), pp. 1–4.

Xu, G.

G. Xu and X. Huang, “Primary calibration of solar photovoltaic cells at the National Metrology Centre of Singapore,” Energy Procedia 25, 70–75 (2012).
[CrossRef]

Yang, F.

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

Yoon, H. W.

Zaid, G.

Appl. Opt. (5)

Energy Procedia (1)

G. Xu and X. Huang, “Primary calibration of solar photovoltaic cells at the National Metrology Centre of Singapore,” Energy Procedia 25, 70–75 (2012).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. Silvestre, L. Sentis, and L. Castaner, “A fast low-cost solar cell spectral response measurement system with accuracy indicator,” IEEE Trans. Instrum. Meas. 48, 944–948 (1999).
[CrossRef]

J. Appl. Phys. (1)

J. L. Shay, S. Wagner, R. W. Epworth, K. J. Bachmann, and E. Buehler, “A simple measurement of absolute solar-cell efficiency,” J. Appl. Phys. 48, 4853–4855 (1977).
[CrossRef]

Mater. Sci. Eng. B (1)

J. A. Rodríguez, M. Fortes, C. Alberte, M. Vetter, and J. Andreu, “Development of a very fast spectral response measurement system for analysis of hydrogenated amorphous silicon solar cells and modules,” Mater. Sci. Eng. B 178, 94–98 (2013).
[CrossRef]

Metrologia (1)

J. Metzdorf, S. Winter, and T. Wittchen, “Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values,” Metrologia 37, 573–578 (2000).
[CrossRef]

Proc. SPIE (1)

K. Emery, “Photovoltaic efficiency measurements,” Proc. SPIE 5520, 36–44 (2004).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

F. C. Krebs, K. O. Sylvester-Hvid, and M. Jørgensen, “A self-calibrating LED-based solar test platform,” Prog. Photovolt. Res. Appl. 19, 97–112 (2011).
[CrossRef]

Solar Cells (1)

J. S. Hartman and M. A. Lind, “Spectral response measurements for solar cells,” Solar Cells 7, 147–157 (1982).
[CrossRef]

Other (8)

R. Ciocan, Z. Li, D. Han, D. Assalone, F. Yang, T. Bilir, E. Ciocan, and K. Emery, “A fully automated system for local spectral characterization of photovoltaic structures,” in 2010 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 1675–1677.

S. Winter, T. Wittchen, and J. Metzdorf, “Primary reference cell calibration at the PTB based on an improved DSR facility,” in Proceedings of the 16th European Photovoltaic Solar Energy Conference (2000), pp. 1–4.

“Standard test method for spectral responsivity measurements of photovoltaic devices,” ASTM Standard E1021-12 (2012), pp. 502–511.

K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, 1983).

H. Field, “Solar cell spectral response measurement errors related to spectral band width and chopped light waveform,” in Conference Record of the 26th IEEE Photovoltaic Specialists Conference, 1997 (1997), pp. 471–474.

T. C. Larason and J. M. Houston, “Spectroradiometric detector measurements: ultraviolet, visible, and near-infrared detectors for spectral power,” NIST Special Publication 250-41 (National Institute of Standards and Technology, 2008).

“Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface,” ASTM Standard G173-03 (2012).

Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Overview of the monochromator-based power mode spectral response measurement system. An underfilled chopped monochromatic illumination is combined with an overfilled light bias. (b) Schematic of the one-point irradiance mode spectral response measurement. An overfilled pulsed LED monochromatic beam is used in conjunction with an overfilled light bias.

Fig. 2.
Fig. 2.

Radiant power of the monochromator’s output with just the Xe source as the input light (long-dashed black line), the QTH light source only (short-dashed red line), and both sources during a normal measurement run where the Xe source is used for all λ<605nm, and QTH is used for all λ>605nm (thick solid green line).

Fig. 3.
Fig. 3.

Frequency-domain signal spectra (10–200 Hz) of a solar cell illuminated by a 43 Hz chopped monochromatic beam and various amounts of light bias illumination provided by a QTH light source. The signal is measured as Vrms across a 50 Ω shunted termination. The background noise is significantly higher for larger amounts of bias illumination.

Fig. 4.
Fig. 4.

Frequency-domain signal spectra (10–200 Hz) of a solar cell illuminated by a 43 Hz chopped monochromatic beam and various amounts of light bias illumination provided by a white LED light sources. The background noise remains unchanged for large amounts of bias illumination. The two large peaks are related to the power line frequency.

Fig. 5.
Fig. 5.

(a) Normalized irradiance of our pulsed green LED projector as measured by a spectroradiometer. (b) Excellent temporal stability of this LED operated in pulse mode, over a period of 30 min.

Fig. 6.
Fig. 6.

Illumination uniformity map produced by the pulsed green LED at the measurement plane, mapped over an area of 2cm×2cm. The detector aperture was 1 mm in size.

Fig. 7.
Fig. 7.

SR in power mode for a reference Si solar cell (2cm×2cm) with (a) no light bias, (b) QTH light bias, and (c) white LED light bias. The white LED light bias source is very stable, and therefore the lock-in amplifier provides raw signals with much lower standard deviations than with the QTH source.

Fig. 8.
Fig. 8.

Irradiance mode SR curves for three solar cells obtained according to the methodology outlined in Subsection 3.A.

Fig. 9.
Fig. 9.

Relative combined k=1 standard uncertainty of the spectral response curve associated with reference Si cell 1.

Tables (1)

Tables Icon

Table 1. NIST-Determined Short-Circuit Currents of a Few Reference Solar Cells Using the Absolute Differential Spectral Response Method and Comparison of These Values with Other Laboratoriesa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λcent=λ·ELED(λ)dλELED(λ)dλ,
Ctr(λ)=Rs(λ)2.221G(Vs(λ)/Vm(λ)),
Rt,pwr mode(λ)=2.221Ctr(λ)G(Vt(λ)/Vm(λ)),
Rt,irrd mode(λcent)=(Vt/Gt)Vs/Gs·Rs*·A
Rs*(λcent)=Rs(λ)·ELED(λ)dλELED(λ)dλ
Rt,irrd mode(λ)=SF(λcent)·Rt,pwr mode(λ),
Isc=Rt,irrd mode(λ)·EAM1.5(λ)dλ,

Metrics