Abstract

We present a continuous-wave (CW) intracavity frequency-doubled Yb:YAG laser providing 1030 and 515 nm output simultaneously. This laser system was designed for photothermal common-path interferometry to measure spatially resolved profiles of the linear absorption in dielectric media and coatings for visible or infrared light as well as of the nonlinear absorption for the combination of both. A Z-shape laser cavity was designed, providing a beam waist in which an LBO crystal was located for effective second-harmonic generation (SHG). Suitable frequency conversion parameters and cavity configurations were discussed to achieve the optimal performance of a diode-pumped CW SHG laser. A 12.4 W 1030 nm laser and 5.4 W 515 nm laser were developed simultaneously in our experiment.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
    [CrossRef]
  2. A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
    [CrossRef]
  3. T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36, 1867–1874 (1997).
    [CrossRef]
  4. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1996).
    [CrossRef]
  5. J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
    [CrossRef]
  6. J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85, 1898–1900 (2004).
    [CrossRef]
  7. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, and A. Voss, “Multiwatt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
    [CrossRef]
  8. X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
    [CrossRef]
  9. T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
    [CrossRef]
  10. A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
    [CrossRef]
  11. J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [CrossRef]
  12. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  13. J. Sakuma, Y. Asakawa, and M. Obara, “Generation of 5 W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Opt. Lett. 29, 92–94 (2004).
    [CrossRef]
  14. C. Czeranowsky, E. Heumann, and G. Huber, “All-solid-state continuous-wave frequency-doubled Nd:YAG–BiBO laser with 2.8 W output power at 473 nm,” Opt. Lett. 28, 432–434 (2003).
    [CrossRef]

2009 (2)

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
[CrossRef]

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[CrossRef]

2007 (1)

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

2006 (1)

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

2004 (2)

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85, 1898–1900 (2004).
[CrossRef]

J. Sakuma, Y. Asakawa, and M. Obara, “Generation of 5 W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Opt. Lett. 29, 92–94 (2004).
[CrossRef]

2003 (2)

2001 (1)

A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
[CrossRef]

1997 (1)

1996 (1)

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1996).
[CrossRef]

1995 (1)

1987 (1)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Alexandrovski, A.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[CrossRef]

Asakawa, Y.

Bass, M.

Beach, R. J.

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1996).
[CrossRef]

Bi, Y.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Brauch, U.

Byer, R. L.

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36, 1867–1874 (1997).
[CrossRef]

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Cai, Z.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
[CrossRef]

Chen, Y.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Cui, D.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Czeranowsky, C.

Demchuk, M. I.

A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
[CrossRef]

Deng, P.

Dong, J.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
[CrossRef]

J. Dong, M. Bass, Y. Mao, P. Deng, and F. Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
[CrossRef]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

Fejer, M.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[CrossRef]

Gan, F.

Geng, A.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Giesen, A.

Guo, X.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Heumann, E.

Hou, W.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Huber, G.

Ikesue, A.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85, 1898–1900 (2004).
[CrossRef]

Imahoko, T.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

Kamata, M.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

Kaminskii, A. A.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
[CrossRef]

Karszewski, M.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Lipovskii, A. A.

A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
[CrossRef]

Malyarevich, A. M.

A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
[CrossRef]

Mao, Y.

Markosian, A.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[CrossRef]

Obara, M.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

J. Sakuma, Y. Asakawa, and M. Obara, “Generation of 5 W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Opt. Lett. 29, 92–94 (2004).
[CrossRef]

Peng, H.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Prokoshin, P. V.

A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
[CrossRef]

Route, R.

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[CrossRef]

Saikawa, J.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85, 1898–1900 (2004).
[CrossRef]

Sakuma, J.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

J. Sakuma, Y. Asakawa, and M. Obara, “Generation of 5 W deep-UV continuous-wave radiation at 266 nm by an external cavity with a CsLiB6O10 crystal,” Opt. Lett. 29, 92–94 (2004).
[CrossRef]

Sato, Y.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85, 1898–1900 (2004).
[CrossRef]

Sekita, H.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

Stewen, C.

Sumiyoshi, T.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

Taira, T.

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85, 1898–1900 (2004).
[CrossRef]

T. Taira, W. M. Tulloch, and R. L. Byer, “Modeling of quasi-three-level lasers and operation of cw Yb:YAG lasers,” Appl. Opt. 36, 1867–1874 (1997).
[CrossRef]

Takasago, K.

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

Tulloch, W. M.

Ueda, K.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
[CrossRef]

Voss, A.

Wang, G.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Xu, Z.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Yagi, H.

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
[CrossRef]

Yumashev, K. V.

A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
[CrossRef]

Zhang, H.

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

T. Imahoko, K. Takasago, M. Kamata, J. Sakuma, T. Sumiyoshi, H. Sekita, and M. Obara, “Development of a highly stable Yb:YAG thin disk pulsed green laser for high power Ti:sapphire based amplifier at 100 kHz repetition rate,” Appl. Phys. B 89, 217–222 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

A. M. Malyarevich, P. V. Prokoshin, M. I. Demchuk, K. V. Yumashev, and A. A. Lipovskii, “Passively Q-switched Ho3+:Y3Al5O12 laser using a PbSe-doped glass,” Appl. Phys. Lett. 78, 572–573 (2001).
[CrossRef]

J. Saikawa, Y. Sato, T. Taira, and A. Ikesue, “Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics,” Appl. Phys. Lett. 85, 1898–1900 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan and R. L. Byer, “Modeling and CW operation of a quasi-three-level 946 nm Nd: YAG laser,” IEEE J. Quantum Electron. 23, 605–612 (1987).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

J. Dong, K. Ueda, H. Yagi, A. A. Kaminskii, and Z. Cai, “Comparative study the effect of Yb concentrations on laser characteristics of Yb:YAG ceramics and crystals,” Laser Phys. Lett. 6, 282–289 (2009).
[CrossRef]

Opt. Commun. (2)

X. Guo, W. Hou, H. Peng, H. Zhang, G. Wang, Y. Bi, A. Geng, Y. Chen, D. Cui, and Z. Xu, “4.44 W of CW 515 nm green light generated by intra-cavity frequency doubling Yb:YAG thin disk laser with LBO,” Opt. Commun. 267, 451–454 (2006).
[CrossRef]

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun. 123, 385–393 (1996).
[CrossRef]

Opt. Lett. (3)

Proc. SPIE (1)

A. Alexandrovski, M. Fejer, A. Markosian, and R. Route, “Photothermal common-path interferometry (PCI): new developments,” Proc. SPIE 7193, 71930D (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

PCI measurements of three different growing generations (Gen0, Gen1A, Gen1B) of BIBO crystals with a 1064 nm laser at an average output power of about 1 W.

Fig. 2.
Fig. 2.

Single-pass SHG power versus the beam radius.

Fig. 3.
Fig. 3.

SHG power versus the radius and length with PIC=200W.

Fig. 4.
Fig. 4.

Schematic diagrams of the experimental setup.

Fig. 5.
Fig. 5.

Beam radius of the laser mode versus L4.

Fig. 6.
Fig. 6.

Beam radius of the laser mode versus fT.

Fig. 7.
Fig. 7.

Output power versus pump power.

Fig. 8.
Fig. 8.

Measured spectrum of 515 and 1030 nm.

Fig. 9.
Fig. 9.

Beam quality: laser caustic and beam profile in the focus plane at 1030 nm, 19.4 W.

Fig. 10.
Fig. 10.

Beam quality: laser caustic and beam profile in the focus plane at 515 nm, 4.5 W.

Fig. 11.
Fig. 11.

Green power versus the operating time.

Fig. 12.
Fig. 12.

PCI of a low absorption LBO crystal at 515 nm, showing absorption peaks of front and back surfaces, conducted with the new laser at 4.5 W output power.

Metrics