Abstract

A Raman remote spectroscopy system was established by using flexible hollow fibers (HFs) as laser excitation fiber and signal collection fiber. Experimental evaluations with various optical fiber combinations were carried out. Experiments were conducted by using silver-coated HFs as both remote transmission fiber and sample cells for liquid sample detection. Good linearity for concentration detection of liquid was obtained with clean background and signal enhancement. Theoretical analysis was carried out to optimize the length of the liquid cell. Measured data show good agreement with the simulation result. HF has shown potentiality in applications for remote and noninvasive Raman detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Munro, V. Pajcini, and S. A. Asher, “Dielectric stack filters for ex situ and in situ UV optical-fiber probe Raman spectroscopic measurements,” Appl. Spectrosc. 51, 1722–1729 (1997).
    [CrossRef]
  2. S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
    [CrossRef]
  3. H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
    [CrossRef]
  4. B. J. Marquardt, D. N. Stratis, D. A. Cremers, and S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
    [CrossRef]
  5. Y. Komachi, H. Sato, K. Aizawa, and H. Tashiro, “Micro-optical fiber probe for use in an intravascular Raman endoscope,” Appl. Opt. 44, 4722–4732 (2005).
    [CrossRef]
  6. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part I: tests of single-fiber lensed and flat and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50, 849–860 (1996).
    [CrossRef]
  7. Y. Komachi, H. Sato, Y. Matsuura, M. Miyagi, and H. Tashiro, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005).
    [CrossRef]
  8. E. Yokoyama, S. Kakino, and Y. Matsuura, “Raman imaging of carious lesions using a hollow optical fiber probe,” Appl. Opt. 47, 4227–4230 (2008).
    [CrossRef]
  9. S. O. Konorov, C. J. Addison, H. G. Schulze, R. F. B. Turner, and M. W. Blades, “Hollow-core photonic crystal fiber-optic probes for Raman spectroscopy,” Opt. Lett. 31, 1911–1913 (2006).
    [CrossRef]
  10. W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
    [CrossRef]
  11. Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
    [CrossRef]
  12. Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
    [CrossRef]
  13. Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
    [CrossRef]
  14. R. Altkorn, M. D. Malinsky, R. P. V. Duyne, and I. Koev, “Intensity considerations in liquid core optical fiber Raman spectroscopy,” Appl. Spectrosc. 55, 373–381 (2001).
    [CrossRef]
  15. F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).
  16. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45, 6736–6740 (2006).
    [CrossRef]
  17. G. Penel, E. C. Pottier, and G. Leroy, “Raman investigation of calcium carbonate bone substitutes and related biomaterials,” Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 45, 56–59 (2003).
  18. J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998).
    [CrossRef]

2011 (2)

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).

2010 (1)

W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
[CrossRef]

2009 (1)

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

2008 (1)

2007 (1)

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

2006 (2)

2005 (2)

2003 (1)

G. Penel, E. C. Pottier, and G. Leroy, “Raman investigation of calcium carbonate bone substitutes and related biomaterials,” Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 45, 56–59 (2003).

2001 (1)

2000 (1)

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

1998 (2)

J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998).
[CrossRef]

B. J. Marquardt, D. N. Stratis, D. A. Cremers, and S. M. Angel, “Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber,” Appl. Spectrosc. 52, 1148–1153 (1998).
[CrossRef]

1997 (1)

1996 (1)

1984 (1)

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Addison, C. J.

Aizawa, K.

Altkorn, R.

Angel, S. M.

Asher, S. A.

Bennett, B.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Blades, M. W.

Bruining, H. A.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Bruschke, A. V.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Buschman, H. P.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Cabello, J. C. R.

J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998).
[CrossRef]

Cao, A. Y.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Cao, B.

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Chen, Q. Y.

W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
[CrossRef]

Cooney, T. F.

Cremers, D. A.

Ding, Y. F.

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Duyne, R. P. V.

Eftekhari, F.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).

Fang, W. H.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Gao, S. Q.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

Helmy, A. S.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).

Hulbert, L.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).

Irizar, J.

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).

Ito, K.

Kakino, S.

Koev, I.

Komachi, Y.

Konorov, S. O.

Laarse, A. V. D.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Lagarón, J. M.

J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998).
[CrossRef]

Leroy, G.

G. Penel, E. C. Pottier, and G. Leroy, “Raman investigation of calcium carbonate bone substitutes and related biomaterials,” Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 45, 56–59 (2003).

Li, D. F.

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Li, Z. W.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

Lu, G. H.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

Ma, L.

Malinsky, M. D.

Marple, E. T.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Marquardt, B. J.

Matsuura, Y.

McCreery, R. L.

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Men, Z. W.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Miyagi, M.

Monge, J. M.

J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998).
[CrossRef]

Munro, C. H.

Pajcini, V.

Pastor, J. M.

J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998).
[CrossRef]

Penel, G.

G. Penel, E. C. Pottier, and G. Leroy, “Raman investigation of calcium carbonate bone substitutes and related biomaterials,” Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 45, 56–59 (2003).

Pottier, E. C.

G. Penel, E. C. Pottier, and G. Leroy, “Raman investigation of calcium carbonate bone substitutes and related biomaterials,” Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 45, 56–59 (2003).

Puppels, G. J.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Qu, G. N.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Sato, H.

Schulze, H. G.

Schut, T. C. B.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Schwab, S. D.

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

Shao, W. Q.

W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
[CrossRef]

Shi, Y. W.

W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
[CrossRef]

Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt. 45, 6736–6740 (2006).
[CrossRef]

Skinner, H. T.

Stratis, D. N.

Sun, B. S.

W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
[CrossRef]

Sun, C. L.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Sun, X. P.

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Tashiro, H.

Tian, Y. J.

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

Turner, R. F. B.

Wach, M. L.

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Wu, X. X.

W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
[CrossRef]

Yokoyama, E.

Yoshida, T.

Zhang, L. Y.

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

Zuo, J.

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

Anal. Chem. (2)

S. D. Schwab and R. L. McCreery, “Versatile, efficient Raman sampling with fiber optics,” Anal. Chem. 56, 2199–2204 (1984).
[CrossRef]

H. P. Buschman, E. T. Marple, M. L. Wach, B. Bennett, T. C. B. Schut, H. A. Bruining, A. V. Bruschke, A. V. D. Laarse, and G. J. Puppels, “In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy,” Anal. Chem. 72, 3771–3775 (2000).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. (1)

F. Eftekhari, J. Irizar, L. Hulbert, and A. S. Helmy, “A comparative study of Raman enhancement in capillaries,” Appl. Phys. 109, 113104 (2011).

Appl. Phys. B (1)

Y. J. Tian, J. Zuo, L. Y. Zhang, Z. W. Li, S. Q. Gao, and G. H. Lu, “Study of Raman resonance cross section of aqueous β-carotene at low concentrations,” Appl. Phys. B 87, 727–730 (2007).
[CrossRef]

Appl. Spectrosc. (4)

Bull. Group. Int. Rech. Sci. Stomatol. Odontol. (1)

G. Penel, E. C. Pottier, and G. Leroy, “Raman investigation of calcium carbonate bone substitutes and related biomaterials,” Bull. Group. Int. Rech. Sci. Stomatol. Odontol. 45, 56–59 (2003).

J. Raman Spectrosc. (2)

Z. W. Men, G. N. Qu, W. H. Fang, X. P. Sun, A. Y. Cao, Z. W. Li, C. L. Sun, S. Q. Gao, and G. H. Lu, “Continuous wave stimulated Raman scattering of benzene by fluorescence enhancement in hollow fused silica fiber,” J. Raman Spectrosc. 42, 1489–1491 (2011).
[CrossRef]

Z. W. Men, W. H. Fang, Y. F. Ding, X. P. Sun, Z. W. Li, B. Cao, J. Zuo, S. Q. Gao, D. F. Li, and G. H. Lu, “Stimulated Raman scattering influenced by concentration, fluorescence profile and bandwidth of β-carotene in liquid-core optical fiber,” J. Raman Spectrosc. 40, 1039–1042 (2009).
[CrossRef]

Macromol. Chem. Phys. (1)

J. C. R. Cabello, J. M. Monge, J. M. Lagarón, and J. M. Pastor, “Determination of the content of extended chain segments in isotropic and uniaxially stretched polyethylenes by Raman spectroscopy,” Macromol. Chem. Phys. 199, 2767–2776 (1998).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

W. Q. Shao, Q. Y. Chen, B. S. Sun, X. X. Wu, and Y. W. Shi, “Experimental study on the durability of dielectric-coated silver hollow fibers for corrosive gas sensing,” Proc. SPIE 7559, 75590F (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Diagram of the Raman spectroscopy system.

Fig. 2.
Fig. 2.

Remote Raman spectroscopy system for solid samples.

Fig. 3.
Fig. 3.

Remote Raman spectroscopy system with HF cell for liquid samples.

Fig. 4.
Fig. 4.

Measured Raman spectra of CaCO3 by remote probes with various fiber combinations.

Fig. 5.
Fig. 5.

Raman spectra of an empty PE bottle and a PE bottle full of CaCO3 powder.

Fig. 6.
Fig. 6.

Raman spectra of (a) ethanol and (b) cyclohexane.

Fig. 7.
Fig. 7.

(a) Raman peaks of water for liquid cell with various lengths. (b) Peak area versus cell length. The solid line is the simulation result. The circles are measured data.

Fig. 8.
Fig. 8.

(a) Raman spectra for the mixed solution of ethanol and cyclohexane with different volume ratio. (b) Measured peak intensity ratio versus volume ratio of ethanol and cyclohexane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(L)=0LI0eαxκeα(Lx)dx=I0κLeαL,

Metrics