Abstract

We propose a single-step method appropriated for a fiber-optic probe-based full-range spectral domain optical coherence tomography (OCT). The fiber-optic probe was scanned over a sample with a magnetically driven actuator. In the reference arm, a phase shift of π/2 was applied during two neighbor axial scanning, from which the complex spectral interferogram was directly reconstructed. Since the complex-conjugate-free OCT image is obtained by doing just one Fourier transform on the complex interferogram, obtaining the full-range image is simple in algorithm and effective in computation time. Some full-range images of biological samples created with the proposed method are presented and the processing time is analyzed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  3. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
    [CrossRef]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain versus time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
    [CrossRef]
  5. J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995).
    [CrossRef]
  6. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
    [CrossRef]
  7. Y. Awatsuji, T. Tahara, A. Kaneko, T. Koyama, K. Nishio, S. Ura, T. Kubota, and O. Matoba, “Parallel two-step phase-shifting digital holography,” Appl. Opt. 47, D183–D189 (2008).
    [CrossRef]
  8. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
    [CrossRef]
  9. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003).
    [CrossRef]
  10. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
    [CrossRef]
  11. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, M. Bonesi, and C. K. Hitzenberger, “Sample motion-insensitive, full-range, complex, spectral-domain optical-coherence tomography,” Opt. Lett. 35, 3913–3915 (2010).
    [CrossRef]
  12. M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957–967 (2005).
    [CrossRef]
  13. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
    [CrossRef]
  14. R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
    [CrossRef]
  15. C. Wu, T. Chi, C. Lee, Y. Kiang, C. Yang, and C. Chiang, “Method for suppressing the mirror image in Fourier-domain optical coherence tomography,” Opt. Lett. 36, 2889–2891 (2011).
    [CrossRef]
  16. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007).
    [CrossRef]
  17. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
    [CrossRef]
  18. L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
    [CrossRef]
  19. K. Zhang, Y. Huang, and J. U. Kang, “Full-range Fourier domain optical coherence tomography imaging probe with a magnetic-driven resonant fiber cantilever,” Opt. Eng. 50, 119002 (2011).
    [CrossRef]
  20. E. J. Min, J. G. Shin, J. H. Lee, Y. Yasuno, and B. H. Lee, “Full range spectral domain optical coherence tomography using a fiber-optic probe as a self-phase shifter,” Opt. Lett. 37, 3105–3107 (2012).
    [CrossRef]
  21. Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006).
    [CrossRef]
  22. A. Dubois, L. Vabre, A. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805–812 (2002).
    [CrossRef]
  23. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
    [CrossRef]
  24. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
    [CrossRef]
  25. H. C. Hendargo, R. P. McNabb, A. Dhalla, N. Shepherd, and J. A. Izatt, “Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography,” Biomed. Opt. Express 2, 2175–2188 (2011).
    [CrossRef]
  26. M. J. Ju, S. J. Lee, E. J. Min, Y. Kim, H. Y. Kim, and B. H. Lee, “Evaluating and identifying pearls and their nuclei by using optical coherence tomography,” Opt. Express 18, 13468–13477 (2010).
    [CrossRef]
  27. X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
    [CrossRef]
  28. S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
    [CrossRef]
  29. H. P. Hu, K. D. Le, and J.-C. Chiao, “An optical scanner based on electromagnetically actuated optical fiber,” Proc. SPIE 6109, 610906 (2006).
    [CrossRef]

2013 (1)

X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
[CrossRef]

2012 (1)

2011 (4)

2010 (2)

2008 (2)

2007 (4)

2006 (4)

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, “Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography,” Appl. Opt. 45, 1861–1865 (2006).
[CrossRef]

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

H. P. Hu, K. D. Le, and J.-C. Chiao, “An optical scanner based on electromagnetically actuated optical fiber,” Proc. SPIE 6109, 610906 (2006).
[CrossRef]

X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
[CrossRef]

2005 (3)

2003 (2)

2002 (2)

1998 (1)

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

1995 (2)

J. Schmit and K. Creath, “Extended averaging technique for derivation of error-compensating algorithms in phase-shifting interferometry,” Appl. Opt. 34, 3610–3619 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

An, L.

Aoki, G.

Awatsuji, Y.

Bajraszewski, T.

Baumann, B.

Beaurepaire, E.

Boccara, A.

Bonesi, M.

Bouma, B. E.

Cai, L. Z.

Carré, M. J.

X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Chi, T.

Chiang, C.

Chiao, J.-C.

H. P. Hu, K. D. Le, and J.-C. Chiao, “An optical scanner based on electromagnetically actuated optical fiber,” Proc. SPIE 6109, 610906 (2006).
[CrossRef]

Choma, M. A.

Creath, K.

de Boer, J. F.

Dhalla, A.

Dong, G. Y.

Dubois, A.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Endo, T.

Fabritius, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Hendargo, H. C.

Heng, X.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Hitzenberger, C. K.

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
[CrossRef]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, M. Bonesi, and C. K. Hitzenberger, “Sample motion-insensitive, full-range, complex, spectral-domain optical-coherence tomography,” Opt. Lett. 35, 3913–3915 (2010).
[CrossRef]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain versus time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Hu, H. P.

H. P. Hu, K. D. Le, and J.-C. Chiao, “An optical scanner based on electromagnetically actuated optical fiber,” Proc. SPIE 6109, 610906 (2006).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Huang, Y.

K. Zhang, Y. Huang, and J. U. Kang, “Full-range Fourier domain optical coherence tomography imaging probe with a magnetic-driven resonant fiber cantilever,” Opt. Eng. 50, 119002 (2011).
[CrossRef]

Itoh, M.

Izatt, J. A.

Ju, M. J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kaneko, A.

Kang, J. U.

K. Zhang, Y. Huang, and J. U. Kang, “Full-range Fourier domain optical coherence tomography imaging probe with a magnetic-driven resonant fiber cantilever,” Opt. Eng. 50, 119002 (2011).
[CrossRef]

Kiang, Y.

Kim, H. Y.

Kim, Y.

Kowalczyk, A.

Koyama, T.

Kubota, T.

Lasser, T.

Le, K. D.

H. P. Hu, K. D. Le, and J.-C. Chiao, “An optical scanner based on electromagnetically actuated optical fiber,” Proc. SPIE 6109, 610906 (2006).
[CrossRef]

Lee, B. H.

Lee, C.

Lee, J. H.

Lee, S. J.

Leitgeb, R.

Leitgeb, R. A.

Lewis, R.

X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Lindner, M. W.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Liu, X.

X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
[CrossRef]

Lu, Z.

X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
[CrossRef]

Makita, S.

Matcher, S. J.

X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
[CrossRef]

Matoba, O.

McDowell, E. J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

McNabb, R. P.

Meng, X. F.

Michaely, R.

Min, E. J.

Nishio, K.

Pircher, M.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sarunic, M. V.

Schmit, J.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Sekhar, S. C.

Shen, X. X.

Shepherd, N.

Shin, J. G.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tahara, T.

Tearney, G. J.

Torzicky, T.

Ura, S.

Vabre, L.

Vakoc, B. J.

Wang, R. K.

Wang, Y. R.

Wojtkowski, M.

Wu, C.

Wu, J.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Xu, X. F.

Yang, C.

Yang, X. L.

Yaqoob, Z.

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zhang, K.

K. Zhang, Y. Huang, and J. U. Kang, “Full-range Fourier domain optical coherence tomography imaging probe with a magnetic-driven resonant fiber cantilever,” Opt. Eng. 50, 119002 (2011).
[CrossRef]

Zotter, S.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” Appl. Phys. Lett. 90, 054103 (2007).
[CrossRef]

Biomed. Opt. Express (1)

J. Biomed. Opt. (2)

Z. Yaqoob, J. Wu, E. J. McDowell, X. Heng, and C. Yang, “Methods and application areas of endoscopic optical coherence tomography,” J. Biomed. Opt. 11, 063001 (2006).
[CrossRef]

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”—new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21–31 (1998).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Eng. (1)

K. Zhang, Y. Huang, and J. U. Kang, “Full-range Fourier domain optical coherence tomography imaging probe with a magnetic-driven resonant fiber cantilever,” Opt. Eng. 50, 119002 (2011).
[CrossRef]

Opt. Express (8)

M. V. Sarunic, M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3×3 fiber couplers,” Opt. Express 13, 957–967 (2005).
[CrossRef]

M. J. Ju, S. J. Lee, E. J. Min, Y. Kim, H. Y. Kim, and B. H. Lee, “Evaluating and identifying pearls and their nuclei by using optical coherence tomography,” Opt. Express 18, 13468–13477 (2010).
[CrossRef]

S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
[CrossRef]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005).
[CrossRef]

S. Makita, T. Fabritius, and Y. Yasuno, “Full-range, high-speed, high-resolution 1 μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye,” Opt. Express 16, 8406–8420 (2008).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain versus time domain optical coherence tomography,” Opt. Express 11, 889–894 (2003).
[CrossRef]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, “High speed full range complex spectral domain optical coherence tomography,” Opt. Express 13, 583–594 (2005).
[CrossRef]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Full range complex spectral domain optical coherence tomography without additional phase shifters,” Opt. Express 15, 13375–13387 (2007).
[CrossRef]

Opt. Lett. (8)

L. An and R. K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Opt. Lett. 32, 3423–3425 (2007).
[CrossRef]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, M. Bonesi, and C. K. Hitzenberger, “Sample motion-insensitive, full-range, complex, spectral-domain optical-coherence tomography,” Opt. Lett. 35, 3913–3915 (2010).
[CrossRef]

C. Wu, T. Chi, C. Lee, Y. Kiang, C. Yang, and C. Chiang, “Method for suppressing the mirror image in Fourier-domain optical coherence tomography,” Opt. Lett. 36, 2889–2891 (2011).
[CrossRef]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453–3455 (2007).
[CrossRef]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002).
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical coherence tomography,” Opt. Lett. 28, 2201–2203 (2003).
[CrossRef]

X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
[CrossRef]

E. J. Min, J. G. Shin, J. H. Lee, Y. Yasuno, and B. H. Lee, “Full range spectral domain optical coherence tomography using a fiber-optic probe as a self-phase shifter,” Opt. Lett. 37, 3105–3107 (2012).
[CrossRef]

Proc. SPIE (1)

H. P. Hu, K. D. Le, and J.-C. Chiao, “An optical scanner based on electromagnetically actuated optical fiber,” Proc. SPIE 6109, 610906 (2006).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef]

Tribol. Int. (1)

X. Liu, Z. Lu, R. Lewis, M. J. Carré, and S. J. Matcher, “Feasibility of using optical coherence tomography to study the influence of skin structure on finger friction,” Tribol. Int. 63, 34–44 (2013).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of a full-range SD OCT system. SLD, superluminescent diode; C, collimator lens; M, mirror; L, lens; LSC, line scan CCD camera; G, grating; GV, galvano scanner; and S, sample.

Fig. 2.
Fig. 2.

Illustration showing the concept of the suggested single-step method in a bulk-optic-based system. An off-axis galvano scanner in the sample arm was used for phase shift. n, number of A-lines; In and In+1, two neighboring A-lines at nth and n+1th in lateral direction; GV, galvano scanner; PA, pivot axis; a, galvano mirror offset; θ, maximum scan angle. A pair of neighboring A-lines is used to construct complex spectral interferogram, which is required for eliminating complex-conjugate term after performing FFT in the wavenumber domain.

Fig. 3.
Fig. 3.

Graph of phase shift with respect to the number of A-lines (lateral position) in radian units. The phase increases linearly with respect to the number of A-lines, and the slope of fitting function is about 1.57 rad, which corresponds to phase shift between two neighboring A-lines.

Fig. 4.
Fig. 4.

Graph representing the complex-conjugate artifact suppression ratio in a single A-line profile. The suppression ratio is 44dB.

Fig. 5.
Fig. 5.

Flow diagram of full-range image reconstruction process. (1) Standard SD OCT image process, and (2) and (3) full-range methods: the BM scan and the single-step method. (a) 2D spectral interferogram, (b) result of FFT of spectral interferogram in the lateral direction (trapezoid-shape solid line indicates spatial frequency filter), (c) the 2D complex spectral interferogram obtained by applying the process of filtering and inverse FFT to (b) for all wavenumbers, (d) full-range image obtained using the BM scan method after FFT of (c) in the optical wavenumber domain, (e) standard SD OCT image overlapped with a complex-conjugate image, and (f) full-range image using single-step method. It is obtained after a single complex FFT in the wavenumber domain.

Fig. 6.
Fig. 6.

(a)–(c), (d)–(f), and (g)–(i) are SD OCT images of a human finger, fingernail, and tooth, respectively. The figure in the first column corresponds to a full-range image obtained using the single-step method, the figure in the second column is obtained using the BM scan method, and the full-range image of (a) and (b), (d) and (e), and (g) and (h) shows the clear structure inside of the sample. The last column corresponds to a standard SD OCT image overlapped with a complex-conjugate image.

Fig. 7.
Fig. 7.

Schematic of the magnetically actuated probe. (a) The probe is composed of a solenoid and an iron-bead loaded single-body lensed fiber and actuated by magnetic force between an iron-bead and a solenoid. (b) Photograph of the single-body lensed-fiber. S, solenoid; I, iron-bead; LF, lensed fiber; FB, fixed bar; SMF, single-mode fiber; CSF, coreless silica fiber.

Fig. 8.
Fig. 8.

Schematic of the fiber-optic probe-based full-range SD OCT system. SLD, superluminescent diode; C, collimator lens; M, mirror; L, lens; LSC, line scan CCD camera; G, grating; GV, galvano scanner; S, solenoid; LF, lensed fiber.

Fig. 9.
Fig. 9.

Illustration showing the concept of suggested single-step method in a fiber-optic probe-based system. n, number of A-lines; In and In+1, two neighboring A-lines at nth and n+1th in lateral direction. The motion of fiber is drawn in the rectangular coordinate. The complex spectral interferogram is made with two neighboring A-lines.

Fig. 10.
Fig. 10.

(a),(b) and (c),(d) are SD OCT images of a human fingertip and fingernail, respectively. The figure in the first column corresponds to the full-range image obtained using the single-step method, the figure in the second column is the standard SD OCT image overlapped with a complex-conjugate image, and the full-range images of (a) and (c) show the clear structure inside of the sample.

Tables (1)

Tables Icon

Table 1. Comparison of Processing Time between the Standard, the BM Scan, and the Single-Step Method

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I(ω,x)=IR(ω)+Is(ω,x)+2[IR(ω)Is(ω,x)]1/2cos(Δφs(ω,x)+φ(x)),
In=I(ω),In+1=I(ω,Δφ=π/2).
I˜n=In+iIn+1=I(ω)+iI(ω,Δφ=π/2).
f˜(τ)=FFT1{I˜n(ω)}=mΓ[τ+(τrτm)].
φn=(4πaθNλ)n,

Metrics