Abstract

We present a high-sensitivity and more flexible bend measurement method, which is based on the coupling of core mode to the cladding modes at the bending region in concatenation with optical fiber grating serving as band reflector. The characteristics of a bend sensing arm composed of bending region and optical fiber grating is examined for different configurations including single fiber Bragg grating (FBG), chirped FBG (CFBG), and double FBGs. The bend loss curves for coated, stripped, and etched sections of fiber in the bending region with FBG, CFBG, and double FBG are obtained experimentally. The effect of separation between bending region and optical fiber grating on loss is measured. The loss responses for single FBG and CFBG configurations are compared to discover the effectiveness for practical applications. It is demonstrated that the sensitivity of the double FBG scheme is twice that of the single FBG and CFBG configurations, and hence acts as sensitivity multiplier. The bend loss response for different fiber diameters obtained through etching in 40% hydrofluoric acid, is measured in double FBG scheme that resulted in a significant increase in the sensitivity, and reduction of dead-zone.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
    [CrossRef]
  2. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40, 232–234 (2004).
    [CrossRef]
  3. S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors.” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
    [CrossRef]
  4. I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
    [CrossRef]
  5. J. Albert, “Tilted fiber Bragg gratings as multi-sensors.” Opt. Photon. News 22(10), 28–33 (2011).
    [CrossRef]
  6. Z. Li, Z. Chen, V. K. S. Hsiao, J. Y. Tang, F. L. Zhao, and S. J. Jiang, “Optically tunable chirped fiber Bragg grating.” Opt. Express 20, 10827–10832 (2012).
    [CrossRef]
  7. H. Renner, “Bending losses of coated single-mode fibers: a simple approach.” J. Lightwave Technol. 10, 544–551 (1992).
    [CrossRef]
  8. A. J. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius.” J. Lightwave Technol. 4, 34–40 (1986).
    [CrossRef]
  9. D. Marcuse, “Curvature loss formula for optical fibers.” J. Opt. Soc. Am. 66, 216–220 (1976).
    [CrossRef]
  10. L. Faustini and G. Martini, “Bend loss in single-mode fibers.” J. Lightwave Technol. 15, 671–679 (1997).
    [CrossRef]
  11. H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range.” J. Lightwave Technol. 29, 1714–1720 (2011).
    [CrossRef]
  12. O. Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Optical inclinometer based on a single long-period fiber grating combined with a fused taper.” Opt. Lett. 31, 2960–2962 (2006).
    [CrossRef]
  13. L. Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer.” Opt. Lett. 35, 1034–1036 (2010).
    [CrossRef]
  14. A. Rauf, J. Zhao, B. Jiang, Y. Jiang, and W. Jiang, “Bend measurement using an etched fiber incorporating a fiber Bragg grating.” Opt. Lett. 38, 214–216 (2013).
    [CrossRef]
  15. T. Erdogan, “Fiber grating spectra.” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  16. B. Jiang, J. Zhao, C. Qin, W. Jiang, A. Rauf, F. Fan, and Z. Huang, “Method for measuring liquid phase diffusion based on tilted fiber Bragg grating.” Opt. Lett. 36, 4308–4310 (2011).
    [CrossRef]

2013 (1)

2012 (1)

2011 (3)

2010 (2)

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors.” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[CrossRef]

L. Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer.” Opt. Lett. 35, 1034–1036 (2010).
[CrossRef]

2006 (1)

2005 (2)

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

2004 (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40, 232–234 (2004).
[CrossRef]

1997 (2)

L. Faustini and G. Martini, “Bend loss in single-mode fibers.” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra.” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1992 (1)

H. Renner, “Bending losses of coated single-mode fibers: a simple approach.” J. Lightwave Technol. 10, 544–551 (1992).
[CrossRef]

1986 (1)

A. J. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius.” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

1976 (1)

Albert, J.

J. Albert, “Tilted fiber Bragg gratings as multi-sensors.” Opt. Photon. News 22(10), 28–33 (2011).
[CrossRef]

L. Y. Shao and J. Albert, “Compact fiber-optic vector inclinometer.” Opt. Lett. 35, 1034–1036 (2010).
[CrossRef]

Araújo, F. M.

Ashwell, G.

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

Au, H. Y.

Bennion, I.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40, 232–234 (2004).
[CrossRef]

Castle, P. F.

A. J. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius.” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

Chen, X.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40, 232–234 (2004).
[CrossRef]

Chen, Z.

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Chung, W. H.

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra.” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Fabris, J. L.

Falate, R.

Fan, F.

Faustini, L.

L. Faustini and G. Martini, “Bend loss in single-mode fibers.” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

Ferreira, L. A.

Frazão, O.

Fu, H. Y.

Harris, A. J.

A. J. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius.” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

Hsiao, V. K. S.

Huang, Z.

Ishaq, I.

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

James, S.

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

Jeong, M.-Y.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors.” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[CrossRef]

Jiang, B.

Jiang, S. J.

Jiang, W.

Jiang, Y.

Khijwania, S. K.

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Lee, S.-M.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors.” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[CrossRef]

Li, Z.

Lopez-Higuera, J.

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

Marcuse, D.

Martini, G.

L. Faustini and G. Martini, “Bend loss in single-mode fibers.” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

Qin, C.

Quintela, A.

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

Rauf, A.

Renner, H.

H. Renner, “Bending losses of coated single-mode fibers: a simple approach.” J. Lightwave Technol. 10, 544–551 (1992).
[CrossRef]

Saini, S. S.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors.” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

Santos, J. L.

Shao, L. Y.

Tam, H. Y.

Tang, J. Y.

Tatam, R.

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

Zhang, L.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40, 232–234 (2004).
[CrossRef]

Zhao, F. L.

Zhao, J.

Zhou, K.

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40, 232–234 (2004).
[CrossRef]

Electron. Lett. (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “High-sensitivity optical chemsensor based on etched D-fibre Bragg gratings,” Electron. Lett. 40, 232–234 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors.” IEEE Photon. Technol. Lett. 22, 1431–1433 (2010).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor.” IEEE Photon. Technol. Lett. 17, 1253–1255 (2005).
[CrossRef]

J. Lightwave Technol. (5)

H. Renner, “Bending losses of coated single-mode fibers: a simple approach.” J. Lightwave Technol. 10, 544–551 (1992).
[CrossRef]

A. J. Harris and P. F. Castle, “Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius.” J. Lightwave Technol. 4, 34–40 (1986).
[CrossRef]

L. Faustini and G. Martini, “Bend loss in single-mode fibers.” J. Lightwave Technol. 15, 671–679 (1997).
[CrossRef]

T. Erdogan, “Fiber grating spectra.” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

H. Y. Au, S. K. Khijwania, H. Y. Fu, W. H. Chung, and H. Y. Tam, “Temperature-insensitive fiber Bragg grating based tilt sensor with large dynamic range.” J. Lightwave Technol. 29, 1714–1720 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Opt. Lett. (4)

Opt. Photon. News (1)

J. Albert, “Tilted fiber Bragg gratings as multi-sensors.” Opt. Photon. News 22(10), 28–33 (2011).
[CrossRef]

Sens. Actuators B (1)

I. Ishaq, A. Quintela, S. James, G. Ashwell, J. Lopez-Higuera, and R. Tatam, “Modification of the refractive index response of long period gratings using thin film overlays.” Sens. Actuators B 107, 738–741 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Schematics of bend measurement setup; (b) BSA for double FBG scheme. S1 and S2 represent the separation of the bending region from FBG1 and FBG2, respectively.

Fig. 2.
Fig. 2.

Reflection spectrum of FBG.

Fig. 3.
Fig. 3.

Variation of bend loss for different intervals between the bending region and FBG.

Fig. 4.
Fig. 4.

Comparison of loss responses using FBG and CFBG.

Fig. 5.
Fig. 5.

Comparison of the bend losses between single and double FBG schemes.

Fig. 6.
Fig. 6.

Bend losses for different etched diameters measured using OSA.

Fig. 7.
Fig. 7.

Effect of etched fiber diameter on bend loss measured using power meter. The inset displays the zoom-in loss variation for small bend angles.

Fig. 8.
Fig. 8.

Effect of IMG on bend loss response.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ps=RGPin.
2α=2α2(Z3Z2)1/2(Z3+Z2)(Z3Z2)cos(2Θ0),
Zq=(2k2n22/R)2/3Xq(b,0)k2nq2(1+2b/R)βo2,q=2,3,Θ0=23[X2(b,0)]2/3+π4=γ3R3k2n22(RcR1)3/2,Rc=2k2n22b/γ2,γ2=βo2k2n22.
Psθ=RGPinexp(4αS),
RG=Sinh2(κ2+σ^2L)Cosh2(κ2+σ^2L)σ^2κ2,
κ=πλυδneff,σ^=2πneff(1λ1λD)+2πλδneff.
Losss(dB)=10lg(PsPsθ)4α.
Loss(dB)=10lg(Pbg+PbPbg+Pbθ),
Pd=Pin[RG1+(1RG1)RG2],
Pdθ=Pin[RG1+(1RG1)RG2]exp(4αS),
Lossd(dB)=10lg(RG1PinRG1Pinexp(4αS))+10lg((1RG1)RG2Pin(1RG1)RG2Pinexp(4αS))8α.

Metrics