Abstract

In this work, fundamental ultrafast transient responses are studied for optical wireless communication (OWC) detectors. It is shown that material impulse responses, associated with transient photoconductivity, and geometrical input responses, associated with transient optical power, must be considered in tandem when OWC photodetection is pursued with broad spectral and directional characteristics. An OWC detector, composed of GaAs photoconductive gaps in a corner-cube geometry, is fabricated and analyzed. The GaAs material response times are investigated experimentally and found to range from approximately 3 ps to 200 fs for 390 nm (violet) to 780 nm (red) photoexcitation. The geometrical response times are investigated theoretically and found to range from approximately 2 to 20 ps for device dimensions from 1 to 10 mm. The overall response times manifest themselves in two distinct dimensional regimes, with differing levels of wavelength and dimension dependence. The relevance of these findings is discussed for future ultrafast OWC detectors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordos, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. Opt. 42, 1726–1731 (2003).
    [CrossRef]
  2. H. Irie and R. Sobolewski, “Terahertz electrical response of nanoscale three-branch junctions,” J. Appl. Phys. 107, 084315 (2010).
    [CrossRef]
  3. W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
    [CrossRef]
  4. M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
    [CrossRef]
  5. S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
    [CrossRef]
  6. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communications system for indoor applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
    [CrossRef]
  7. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44, 4946–4952 (2005).
    [CrossRef]
  8. M. Niu, J. Cheng, and J. F. Holzman, “MIMO architecture for coherent optical wireless communications: System design and performance,” J. Opt. Commun. Netw. 5, 411–420 (2013).
    [CrossRef]
  9. K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4×12.5  Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
    [CrossRef]
  10. J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).
    [CrossRef]
  11. J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
    [CrossRef]
  12. W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52, 269–279 (2004).
    [CrossRef]
  13. C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. Pure Appl. Opt. 11, 085404 (2009).
    [CrossRef]
  14. G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
    [CrossRef]
  15. X. Jin, D. Guerrero, and J. F. Holzman, “Enhanced link directionality for optical wireless communications,” IEEE Photon. Technol. Lett. 24, 2225–2228 (2012).
    [CrossRef]
  16. X. Jin and J. F. Holzman, “Multitone photoconductive sensors for free-space optics,” IEEE Photon. J. 2, 659–669 (2010).
    [CrossRef]
  17. P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477–1479 (1992).
    [CrossRef]
  18. M. A. Cavicchia and R. R. Alfano, “Time-resolved IR-absorption spectroscopy of hot-electron dynamics in satellite and upper conduction bands in GaP,” Phys. Rev. B 51, 9629–9633 (1995).
    [CrossRef]
  19. C. M. Collier, B. Born, X. Jin, and J. F. Holzman, “Ultrafast spectroscopy of hot electron and hole dynamics in GaP,” Proc. SPIE8845, 884530 (2013).
  20. C. M. Collier, X. Jin, and J. F. Holzman, “Ultrafast refractometry for characterization of nanocomposite material systems,” IEEE Photon. Technol. Lett. 24, 590–592 (2012).
    [CrossRef]
  21. A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, and S. R. Johnson, “Generation of 1 ps infrared pulses at 10.6 μm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19, 898–900 (1994).
    [CrossRef]
  22. K. P. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78, 3478–3480 (2001).
    [CrossRef]

2013

2012

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

X. Jin, D. Guerrero, and J. F. Holzman, “Enhanced link directionality for optical wireless communications,” IEEE Photon. Technol. Lett. 24, 2225–2228 (2012).
[CrossRef]

C. M. Collier, X. Jin, and J. F. Holzman, “Ultrafast refractometry for characterization of nanocomposite material systems,” IEEE Photon. Technol. Lett. 24, 590–592 (2012).
[CrossRef]

2011

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communications system for indoor applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4×12.5  Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
[CrossRef]

2010

X. Jin and J. F. Holzman, “Multitone photoconductive sensors for free-space optics,” IEEE Photon. J. 2, 659–669 (2010).
[CrossRef]

H. Irie and R. Sobolewski, “Terahertz electrical response of nanoscale three-branch junctions,” J. Appl. Phys. 107, 084315 (2010).
[CrossRef]

2009

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. Pure Appl. Opt. 11, 085404 (2009).
[CrossRef]

2005

2004

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52, 269–279 (2004).
[CrossRef]

2003

2001

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

K. P. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78, 3478–3480 (2001).
[CrossRef]

2000

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).
[CrossRef]

1998

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

1995

M. A. Cavicchia and R. R. Alfano, “Time-resolved IR-absorption spectroscopy of hot-electron dynamics in satellite and upper conduction bands in GaP,” Phys. Rev. B 51, 9629–9633 (1995).
[CrossRef]

1994

1992

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477–1479 (1992).
[CrossRef]

Abbott, D.

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Adam, R.

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordos, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. Opt. 42, 1726–1731 (2003).
[CrossRef]

Afshar V., S.

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Alfano, R. R.

M. A. Cavicchia and R. R. Alfano, “Time-resolved IR-absorption spectroscopy of hot-electron dynamics in satellite and upper conduction bands in GaP,” Phys. Rev. B 51, 9629–9633 (1995).
[CrossRef]

Atakaramians, S.

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Bang, O.

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Barbehenn, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Born, B.

C. M. Collier, B. Born, X. Jin, and J. F. Holzman, “Ultrafast spectroscopy of hot electron and hole dynamics in GaP,” Proc. SPIE8845, 884530 (2013).

Bovais, C. S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Burris, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Carruthers, J. B.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).
[CrossRef]

Cavicchia, M. A.

M. A. Cavicchia and R. R. Alfano, “Time-resolved IR-absorption spectroscopy of hot-electron dynamics in satellite and upper conduction bands in GaP,” Phys. Rev. B 51, 9629–9633 (1995).
[CrossRef]

Cheng, J.

M. Niu, J. Cheng, and J. F. Holzman, “MIMO architecture for coherent optical wireless communications: System design and performance,” J. Opt. Commun. Netw. 5, 411–420 (2013).
[CrossRef]

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. Pure Appl. Opt. 11, 085404 (2009).
[CrossRef]

Cochrell, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Collier, C. M.

C. M. Collier, X. Jin, and J. F. Holzman, “Ultrafast refractometry for characterization of nanocomposite material systems,” IEEE Photon. Technol. Lett. 24, 590–592 (2012).
[CrossRef]

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. Pure Appl. Opt. 11, 085404 (2009).
[CrossRef]

C. M. Collier, B. Born, X. Jin, and J. F. Holzman, “Ultrafast spectroscopy of hot electron and hole dynamics in GaP,” Proc. SPIE8845, 884530 (2013).

Davidson, F. M.

Dikmelik, Y.

Djahani, P.

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

Dykaar, D. R.

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477–1479 (1992).
[CrossRef]

Elezzabi, A. Y.

Federici, J. F.

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477–1479 (1992).
[CrossRef]

Ferraro, M.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Gilbreath, G. C.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Goins, K. C.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Greene, B. I.

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477–1479 (1992).
[CrossRef]

Grutzmacher, D.

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

Guerrero, D.

X. Jin, D. Guerrero, and J. F. Holzman, “Enhanced link directionality for optical wireless communications,” IEEE Photon. Technol. Lett. 24, 2225–2228 (2012).
[CrossRef]

Hegmann, F. A.

K. P. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78, 3478–3480 (2001).
[CrossRef]

Holzman, J. F.

M. Niu, J. Cheng, and J. F. Holzman, “MIMO architecture for coherent optical wireless communications: System design and performance,” J. Opt. Commun. Netw. 5, 411–420 (2013).
[CrossRef]

C. M. Collier, X. Jin, and J. F. Holzman, “Ultrafast refractometry for characterization of nanocomposite material systems,” IEEE Photon. Technol. Lett. 24, 590–592 (2012).
[CrossRef]

X. Jin, D. Guerrero, and J. F. Holzman, “Enhanced link directionality for optical wireless communications,” IEEE Photon. Technol. Lett. 24, 2225–2228 (2012).
[CrossRef]

X. Jin and J. F. Holzman, “Multitone photoconductive sensors for free-space optics,” IEEE Photon. J. 2, 659–669 (2010).
[CrossRef]

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. Pure Appl. Opt. 11, 085404 (2009).
[CrossRef]

C. M. Collier, B. Born, X. Jin, and J. F. Holzman, “Ultrafast spectroscopy of hot electron and hole dynamics in GaP,” Proc. SPIE8845, 884530 (2013).

Hughes, M. K. Y.

Ikossi-Anastasiou, K.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Irie, H.

H. Irie and R. Sobolewski, “Terahertz electrical response of nanoscale three-branch junctions,” J. Appl. Phys. 107, 084315 (2010).
[CrossRef]

Ji, W.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

Jin, X.

X. Jin, D. Guerrero, and J. F. Holzman, “Enhanced link directionality for optical wireless communications,” IEEE Photon. Technol. Lett. 24, 2225–2228 (2012).
[CrossRef]

C. M. Collier, X. Jin, and J. F. Holzman, “Ultrafast refractometry for characterization of nanocomposite material systems,” IEEE Photon. Technol. Lett. 24, 590–592 (2012).
[CrossRef]

X. Jin and J. F. Holzman, “Multitone photoconductive sensors for free-space optics,” IEEE Photon. J. 2, 659–669 (2010).
[CrossRef]

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. Pure Appl. Opt. 11, 085404 (2009).
[CrossRef]

C. M. Collier, B. Born, X. Jin, and J. F. Holzman, “Ultrafast spectroscopy of hot electron and hole dynamics in GaP,” Proc. SPIE8845, 884530 (2013).

Johnson, S. R.

Kahn, J. M.

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52, 269–279 (2004).
[CrossRef]

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).
[CrossRef]

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

Katzer, D. S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Kordos, P.

Lim, C.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communications system for indoor applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4×12.5  Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
[CrossRef]

Lui, K. P.

K. P. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78, 3478–3480 (2001).
[CrossRef]

Mahon, R.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Mao, W.

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52, 269–279 (2004).
[CrossRef]

Meehan, T. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Meyer, J.

Mikulics, M.

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordos, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. Opt. 42, 1726–1731 (2003).
[CrossRef]

Monro, T. M.

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Montes, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Nagel, M.

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Nirmalathas, A.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communications system for indoor applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4×12.5  Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
[CrossRef]

Niu, M.

Qu, G.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

Rabinovich, W. S.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Rasmussen, H. K.

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

Saeta, P. N.

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477–1479 (1992).
[CrossRef]

Serafini, J.

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

Shi, W.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

Siegel, M.

Skafidas, E.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communications system for indoor applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4×12.5  Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
[CrossRef]

Sobolewski, R.

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

H. Irie and R. Sobolewski, “Terahertz electrical response of nanoscale three-branch junctions,” J. Appl. Phys. 107, 084315 (2010).
[CrossRef]

X. Zheng, Y. Xu, R. Sobolewski, R. Adam, M. Mikulics, M. Siegel, and P. Kordos, “Femtosecond response of a free-standing LT-GaAs photoconductive switch,” Appl. Opt. 42, 1726–1731 (2003).
[CrossRef]

Sokolsky, I.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Tang, A.

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

Teik, B. K.

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

Tian, L.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

Vasquez, J. A.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Vilcheck, M. J.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Wang, K.

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “4×12.5  Gb/s WDM optical wireless communication system for indoor applications,” J. Lightwave Technol. 29, 1988–1996 (2011).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communications system for indoor applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[CrossRef]

Weisbin, A. G.

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

Xu, M.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

Xu, Y.

Xue, H.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

You, R.

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

Zhang, J.

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

Zhang, L.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

Zheng, X.

Appl. Opt.

Appl. Phys. Lett.

W. Shi, G. Qu, M. Xu, H. Xue, W. Ji, L. Zhang, and L. Tian, “Current limiting effects of photoactivated charge domain in semi-insulating GaAs photoconductive switch,” Appl. Phys. Lett. 94, 072110 (2009).
[CrossRef]

M. Mikulics, J. Zhang, J. Serafini, R. Adam, D. Grutzmacher, and R. Sobolewski, “Subpicosecond electron-hole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures,” Appl. Phys. Lett. 101, 031111 (2012).
[CrossRef]

S. Atakaramians, S. Afshar V., M. Nagel, H. K. Rasmussen, O. Bang, T. M. Monro, and D. Abbott, “Direct probing of evanescent field for characterization of porous terahertz fibers,” Appl. Phys. Lett. 98, 121104 (2011).
[CrossRef]

P. N. Saeta, J. F. Federici, B. I. Greene, and D. R. Dykaar, “Intervalley scattering in GaAs and InP probed by pulsed far-infrared transmission spectroscopy,” Appl. Phys. Lett. 60, 1477–1479 (1992).
[CrossRef]

K. P. Lui and F. A. Hegmann, “Ultrafast carrier relaxation in radiation-damaged silicon on sapphire studied by optical-pump-terahertz-probe experiments,” Appl. Phys. Lett. 78, 3478–3480 (2001).
[CrossRef]

IEEE Commun. Mag.

J. M. Kahn, R. You, P. Djahani, A. G. Weisbin, B. K. Teik, and A. Tang, “Imaging diversity receivers for high-speed infrared wireless communication,” IEEE Commun. Mag. 36(12), 88–94 (1998).
[CrossRef]

IEEE Photon. J.

X. Jin and J. F. Holzman, “Multitone photoconductive sensors for free-space optics,” IEEE Photon. J. 2, 659–669 (2010).
[CrossRef]

IEEE Photon. Technol. Lett.

X. Jin, D. Guerrero, and J. F. Holzman, “Enhanced link directionality for optical wireless communications,” IEEE Photon. Technol. Lett. 24, 2225–2228 (2012).
[CrossRef]

K. Wang, A. Nirmalathas, C. Lim, and E. Skafidas, “High-speed optical wireless communications system for indoor applications,” IEEE Photon. Technol. Lett. 23, 519–521 (2011).
[CrossRef]

C. M. Collier, X. Jin, and J. F. Holzman, “Ultrafast refractometry for characterization of nanocomposite material systems,” IEEE Photon. Technol. Lett. 24, 590–592 (2012).
[CrossRef]

IEEE Trans. Commun.

J. B. Carruthers and J. M. Kahn, “Angle diversity for nondirected wireless infrared communication,” IEEE Trans. Commun. 48, 960–969 (2000).
[CrossRef]

W. Mao and J. M. Kahn, “Free-space heterochronous imaging reception of multiple optical signals,” IEEE Trans. Commun. 52, 269–279 (2004).
[CrossRef]

J. Appl. Phys.

H. Irie and R. Sobolewski, “Terahertz electrical response of nanoscale three-branch junctions,” J. Appl. Phys. 107, 084315 (2010).
[CrossRef]

J. Lightwave Technol.

J. Opt. Commun. Netw.

J. Opt. Pure Appl. Opt.

C. M. Collier, X. Jin, J. F. Holzman, and J. Cheng, “Omni-directional characteristics of composite retroreflectors,” J. Opt. Pure Appl. Opt. 11, 085404 (2009).
[CrossRef]

Opt. Eng.

G. C. Gilbreath, W. S. Rabinovich, T. J. Meehan, M. J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J. A. Vasquez, C. S. Bovais, K. Cochrell, K. C. Goins, R. Barbehenn, D. S. Katzer, K. Ikossi-Anastasiou, and M. J. Montes, “Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles,” Opt. Eng. 40, 1348–1356 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. B

M. A. Cavicchia and R. R. Alfano, “Time-resolved IR-absorption spectroscopy of hot-electron dynamics in satellite and upper conduction bands in GaP,” Phys. Rev. B 51, 9629–9633 (1995).
[CrossRef]

Other

C. M. Collier, B. Born, X. Jin, and J. F. Holzman, “Ultrafast spectroscopy of hot electron and hole dynamics in GaP,” Proc. SPIE8845, 884530 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the PC detector is shown. Biasing with Vbias13 is applied to the PC13 gaps. The output photocurrent, iout(t), is collected at the lower vertex electrode. The incident optical intensity enters the structure along the azimuthal angle ϕ and polar angle θ. The side-length along the interior corner is a. The PC gap is located at a distance of b=a/2 from the vertex, along the interior corner. The entrance interface is defined by the plane (a,a,a). The fabricated PC detector is shown in the inset photograph.

Fig. 2.
Fig. 2.

Time-resolved pump-probe differential transmissivity experimental setup is shown in (a). The material impulse response is shown as the normalized transient photoconductivity, σ(t), for (b) 390 nm (violet) and (c) 780 nm (red) pump photoexcitation, with respective pump fluences of 20 and 40μJ/cm2 on the GaAs PC gaps. The GaAs electronic bandstructure is shown in the insets with the relevant photoexcitation transitions and intervalley scattering processes.

Fig. 3.
Fig. 3.

Responses are shown for a PC detector with a side-length of a=5mm. The geometrical input response is shown as the normalized transient optical power, P(t), on the PC gaps for (a) 390 nm (violet) and (b) 780 nm (red) photoexcitation. The resulting overall response is shown as the normalized output photocurrent, iout(t), for (c) 390 nm (violet) and (d) 780 nm (red) photoexcitation.

Fig. 4.
Fig. 4.

Responses are shown for a PC detector with a side-length of a=1mm. The geometrical input response is shown as the normalized transient optical power, P(t), on the PC gaps for (a) 390 nm (violet) and (b) 780 nm (red) photoexcitation. The resulting overall response is shown as the normalized output photocurrent, iout(t), for (c) 390 nm (violet) and (d) 780 nm (red) photoexcitation.

Fig. 5.
Fig. 5.

Responses are shown for a PC detector with a side-length of a=10mm. The geometrical input response is shown as the normalized transient optical power, P(t), on the PC gaps for (a) 390 nm (violet) and (b) 780 nm (red) photoexcitation. The resulting overall response is shown as the normalized output photocurrent, iout(t), for (c) 390 nm (violet) and (d) 780 nm (red) photoexcitation.

Fig. 6.
Fig. 6.

PC detector overall response times are shown for side-length, a, ranging from 1 to 10 mm, with triangles for 390 nm (violet) photoexcitation and diamonds for 780 nm (red) photoexcitation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P(t,λ)={δ(τt0)+2R(λ)[u(τt0)u(τt1)]+2R(λ)2δ(τt2)}Iop(tτ)*(3Aϕ)dτ,
P(t,λ)=Aexp[(2ln2(tt0)τp)2]+2BR(λ)[erf(2ln2(tt0)τp)erf(2ln2(tt1)τp)]+2CR(λ)2exp[(2ln2(tt2)τp)2],

Metrics