Abstract

We present a dual-modality three-dimensional imaging approach that integrates diffuse optical tomography (DOT) and electroencephalographic source localization (ESL). This dual-modal DOT/ESL approach is evaluated using solid tissue-like phantoms where targets having both optical and electrical contrasts relative to the background phantom are included. The results obtained from extensive phantom experiments show that this dual-modal approach is suitable for imaging seizure focus in the study of epilepsy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).
  2. C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125–1144 (2006).
    [CrossRef]
  3. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
    [CrossRef]
  4. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004).
    [CrossRef]
  5. N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
    [CrossRef]
  6. Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
    [CrossRef]
  7. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near infrared spectroscopy,” Biomed. Opt. Express 1, 324–336 (2010).
    [CrossRef]
  8. J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51, 3461–3469 (2012).
    [CrossRef]
  9. M. Nuwer, “Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Report of the American Academy of Neurology and the American Clinical Neurophysiology Society,” Neurology 49, 277–292 (1997).
    [CrossRef]
  10. A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
    [CrossRef]
  11. G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
    [CrossRef]
  12. C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
    [CrossRef]
  13. F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
    [CrossRef]
  14. C. Plummer, A. S. Harvey, and M. Cook, “EEG source localization in focal epilepsy: where are we now?” Epilepsia 49, 201–218 (2008).
    [CrossRef]
  15. P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
    [CrossRef]
  16. Y. Petrov, “Harmony: EEG/MEG linear inverse source reconstruction in the anatomical of spherical harmonics,” PLoS ONE 7, 1–15 (2012).
    [CrossRef]
  17. N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
    [CrossRef]
  18. R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009).
    [CrossRef]
  19. R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
    [CrossRef]
  20. M. C. Toet and P. M. A. Lemmers, “Brain monitoring in neonates,” Early Hum. Dev. 85, 77–84 (2009).
    [CrossRef]
  21. D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
    [CrossRef]
  22. M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
    [CrossRef]
  23. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
    [CrossRef]
  24. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998).
    [CrossRef]
  25. H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media,” Opt. Express 7, 204–209 (2000).
    [CrossRef]
  26. H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999).
    [CrossRef]
  27. X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30861–869 (2003).
    [CrossRef]
  28. Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007).
    [CrossRef]
  29. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
    [CrossRef]

2012 (5)

J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51, 3461–3469 (2012).
[CrossRef]

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Y. Petrov, “Harmony: EEG/MEG linear inverse source reconstruction in the anatomical of spherical harmonics,” PLoS ONE 7, 1–15 (2012).
[CrossRef]

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

2010 (1)

2009 (3)

R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009).
[CrossRef]

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

M. C. Toet and P. M. A. Lemmers, “Brain monitoring in neonates,” Early Hum. Dev. 85, 77–84 (2009).
[CrossRef]

2008 (4)

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

C. Plummer, A. S. Harvey, and M. Cook, “EEG source localization in focal epilepsy: where are we now?” Epilepsia 49, 201–218 (2008).
[CrossRef]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[CrossRef]

2007 (3)

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007).
[CrossRef]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
[CrossRef]

N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
[CrossRef]

2006 (2)

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

C. Zhou, G. Yu, D. Furuya, J. Greenberg, A. Yodh, and T. Durduran, “Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain,” Opt. Express 14, 1125–1144 (2006).
[CrossRef]

2004 (2)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004).
[CrossRef]

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

2003 (2)

G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
[CrossRef]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30861–869 (2003).
[CrossRef]

2000 (2)

H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media,” Opt. Express 7, 204–209 (2000).
[CrossRef]

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

1999 (1)

1998 (2)

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef]

1997 (1)

M. Nuwer, “Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Report of the American Academy of Neurology and the American Clinical Neurophysiology Society,” Neurology 49, 277–292 (1997).
[CrossRef]

Beck, A.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Berquin, P.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Bettings, M.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Bhatt, D.

R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009).
[CrossRef]

Biallas, M.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Boas, D. A.

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near infrared spectroscopy,” Biomed. Opt. Express 1, 324–336 (2010).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004).
[CrossRef]

Carmant, L.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Carney, P.

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Chen, L. K.

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Cook, M.

C. Plummer, A. S. Harvey, and M. Cook, “EEG source localization in focal epilepsy: where are we now?” Epilepsia 49, 201–218 (2008).
[CrossRef]

Cooper, R. J.

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009).
[CrossRef]

Coutin-Churchman, P. E.

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004).
[CrossRef]

Dewar, S.

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Durduran, T.

Enfield, L. C.

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

Everdell, N. L.

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009).
[CrossRef]

Florea, O.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Franceschini, M. A.

R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near infrared spectroscopy,” Biomed. Opt. Express 1, 324–336 (2010).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004).
[CrossRef]

Furuya, D.

Gibson, A. P.

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

Gonzalez, S.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

Grave de Peralta, R.

G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
[CrossRef]

Grebe, R.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
[CrossRef]

Greenberg, J.

Gu, X.

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30861–869 (2003).
[CrossRef]

Hagmann, C.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Harvey, A. S.

C. Plummer, A. S. Harvey, and M. Cook, “EEG source localization in focal epilepsy: where are we now?” Epilepsia 49, 201–218 (2008).
[CrossRef]

Hebden, J. C.

R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009).
[CrossRef]

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

Hillman, E. M.

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
[CrossRef]

Holper, L.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Hunjan, A.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Iftimia, N.

Jenny, C.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Jiang, H.

J. Yang, T. Zhang, H. Yang, and H. Jiang, “Fast multispectral diffuse optical tomography system for in vivo three-dimensional imaging of seizure dynamics,” Appl. Opt. 51, 3461–3469 (2012).
[CrossRef]

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[CrossRef]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007).
[CrossRef]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30861–869 (2003).
[CrossRef]

H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media,” Opt. Express 7, 204–209 (2000).
[CrossRef]

H. Jiang, “Optical image reconstruction based on the third-order diffusion equations,” Opt. Express 4, 241–246 (1999).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef]

H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).

Kamijo, K.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Kongolo, G.

N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
[CrossRef]

Kurian, M.

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

Lantz, G.

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
[CrossRef]

Lassonde, M.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Lemmers, P. M. A.

M. C. Toet and P. M. A. Lemmers, “Brain monitoring in neonates,” Early Hum. Dev. 85, 77–84 (2009).
[CrossRef]

Lepore, F.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Lesage, F.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Liang, X.

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Liu, Z.

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Mesquita, R. C.

Michel, C. M.

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
[CrossRef]

Murray, M. M.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

Nehlig, A.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Nguyen, D. K.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Nuwer, M.

M. Nuwer, “Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Report of the American Academy of Neurology and the American Clinical Neurophysiology Society,” Neurology 49, 277–292 (1997).
[CrossRef]

Nuwer, M. R.

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Ochi, A.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Osterberg, U. L.

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef]

Otsubo, H.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Patterson, M. S.

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef]

Paulsen, K. D.

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef]

Peralta, R. G.

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

Petrov, Y.

Y. Petrov, “Harmony: EEG/MEG linear inverse source reconstruction in the anatomical of spherical harmonics,” PLoS ONE 7, 1–15 (2012).
[CrossRef]

Plummer, C.

C. Plummer, A. S. Harvey, and M. Cook, “EEG source localization in focal epilepsy: where are we now?” Epilepsia 49, 201–218 (2008).
[CrossRef]

Ponchel, E.

N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
[CrossRef]

Pouliot, P.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Roche-Labarbe, N.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
[CrossRef]

Rutka, J. T.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Sawan, M.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Scholkmann, F.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Seeck, M.

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
[CrossRef]

Sharm, R.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Shattuck, K.

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Shirasawa, A.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Snead, O. C.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Sobel, E.

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007).
[CrossRef]

Sobel, E. S.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[CrossRef]

Sperli, F.

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

Spinelli, L.

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
[CrossRef]

Toet, M. C.

M. C. Toet and P. M. A. Lemmers, “Brain monitoring in neonates,” Early Hum. Dev. 85, 77–84 (2009).
[CrossRef]

Trajkovic, L.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Tremblay, J.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Vannasing, P.

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

Wallois, F.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
[CrossRef]

Wang, Q.

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Wilson, S. B.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Wolf, M.

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Worley, A.

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

Wu, J. Y.

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Xu, Y.

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30861–869 (2003).
[CrossRef]

H. Jiang, Y. Xu, and N. Iftimia, “Experimental three-dimensional optical image reconstruction of heterogeneous turbid media,” Opt. Express 7, 204–209 (2000).
[CrossRef]

Yamazaki, T.

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

Yang, H.

Yang, J.

Yodh, A.

Yu, G.

Yuan, Z.

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[CrossRef]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007).
[CrossRef]

Zaaimi, B.

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Zhang, Q.

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[CrossRef]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007).
[CrossRef]

Zhang, T.

Zhou, C.

Appl. Opt. (1)

Biomed. Opt. Express (1)

Clin. Neurophysiol. (4)

A. Ochi, H. Otsubo, A. Shirasawa, A. Hunjan, R. Sharm, M. Bettings, J. T. Rutka, K. Kamijo, T. Yamazaki, S. B. Wilson, and O. C. Snead, “Systematic approach to dipole localization of interictal EEG spikes in children with extra temporal lobe epilepsies,” Clin. Neurophysiol. 111, 161–168 (2000).
[CrossRef]

G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?” Clin. Neurophysiol. 114, 63–69 (2003).
[CrossRef]

C. M. Michel, M. M. Murray, G. Lantz, S. Gonzalez, L. Spinelli, and R. G. Peralta, “EEG source imaging,” Clin. Neurophysiol. 115, 2195–2222 (2004).
[CrossRef]

P. E. Coutin-Churchman, J. Y. Wu, L. K. Chen, K. Shattuck, S. Dewar, and M. R. Nuwer, “Quantification and localization of EEG interictal spike activity in patients with surgically removed epileptogenic foci,” Clin. Neurophysiol. 123, 471–485 (2012).
[CrossRef]

Early Hum. Dev. (1)

M. C. Toet and P. M. A. Lemmers, “Brain monitoring in neonates,” Early Hum. Dev. 85, 77–84 (2009).
[CrossRef]

Epilepsia (3)

F. Sperli, L. Spinelli, M. Seeck, M. Kurian, C. M. Michel, and G. Lantz, “EEG source imaging in pediatric epilepsy surgery: a new perspective in presurgical workup,” Epilepsia 47, 981–990 (2006).
[CrossRef]

C. Plummer, A. S. Harvey, and M. Cook, “EEG source localization in focal epilepsy: where are we now?” Epilepsia 49, 201–218 (2008).
[CrossRef]

N. Roche‐Labarbe, B. Zaaimi, P. Berquin, A. Nehlig, R. Grebe, and F. Wallois, “NIRS-measured oxy-and deoxyhemoglobin changes associated with EEG spike-and-wave discharges in children,” Epilepsia 49, 1871–1880 (2008).
[CrossRef]

Epilepsy Res. (1)

D. K. Nguyen, J. Tremblay, P. Pouliot, P. Vannasing, O. Florea, L. Carmant, F. Lepore, M. Sawan, F. Lesage, and M. Lassonde, “Non-invasive continuous EEG-fNIRS recording of temporal lobe seizures,” Epilepsy Res. 99, 112–126 (2012).
[CrossRef]

J. Biomed. Opt. (4)

M. Biallas, L. Trajkovic, C. Hagmann, F. Scholkmann, C. Jenny, L. Holper, A. Beck, and M. Wolf, “Multimodal recording of brain activity in term newborns during photic stimulation by near-infrared spectroscopy and electroencephalography,” J. Biomed. Opt. 17, 86011 (2012).
[CrossRef]

Z. Yuan, Q. Zhang, E. Sobel, and H. Jiang, “Three-dimensional diffuse optical tomography of osteoarthritis: initial results in the finger joints,” J. Biomed. Opt. 12, 034001 (2007).
[CrossRef]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[CrossRef]

E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12, 051402 (2007).
[CrossRef]

Med. Phys. (3)

Q. Wang, Q. Wang, X. Liang, Z. Liu, Q. Zhang, P. Carney, and H. Jiang, “Visualizing localized dynamic changes during epileptic seizure onset in vivo with diffuse optical tomography,” Med. Phys. 35, 216–224 (2008).
[CrossRef]

X. Gu, Y. Xu, and H. Jiang, “Mesh-based enhancement schemes in diffuse optical tomography,” Med. Phys. 30861–869 (2003).
[CrossRef]

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Frequency-domain near-infrared photo diffusion imaging: initial evaluation in multi-target tissue-like phantoms,” Med. Phys. 25, 183–193 (1998).
[CrossRef]

NeuroImage (1)

D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” NeuroImage 23, S275–S288 (2004).
[CrossRef]

N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36, 718–727 (2007).
[CrossRef]

Neurology (1)

M. Nuwer, “Assessment of digital EEG, quantitative EEG, and EEG brain mapping. Report of the American Academy of Neurology and the American Clinical Neurophysiology Society,” Neurology 49, 277–292 (1997).
[CrossRef]

Opt. Express (3)

Phys. Med. Biol. (3)

H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, “Improved continuous light diffusion imaging in single- and multi-target tissue-like phantoms,” Phys. Med. Biol. 43, 675–693 (1998).
[CrossRef]

R. J. Cooper, D. Bhatt, N. L. Everdell, and J. C. Hebden, “A tissue-like optically turbid and electrically conducting phantom for simultaneous EEG and near-infrared imaging,” Phys. Med. Biol. 54, N403–N408 (2009).
[CrossRef]

R. J. Cooper, N. L. Everdell, L. C. Enfield, A. P. Gibson, A. Worley, and J. C. Hebden, “Design and evaluation of a probe for simultaneous EEG and near-infrared imaging of cortical activation,” Phys. Med. Biol. 54, 2093–2102 (2009).
[CrossRef]

PLoS ONE (1)

Y. Petrov, “Harmony: EEG/MEG linear inverse source reconstruction in the anatomical of spherical harmonics,” PLoS ONE 7, 1–15 (2012).
[CrossRef]

Other (1)

H. Jiang, Diffuse Optical Tomography: Principles and Applications (CRC Press, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the DOT/ESL imaging system.

Fig. 2.
Fig. 2.

(a) Photograph of the DOT/ESL probe interface. (b) Pattern of source (red) and detector (green) positions for DOT and electrode (black) positions for ESL.

Fig. 3.
Fig. 3.

Normalized RMS deflection recorded at electrodes 1 and 16 for varying lateral separation of dipole and electrodes.

Fig. 4.
Fig. 4.

(a) Geometry of the phantoms with the target at different depths. Reconstructed (b) ESL and (c) μa images with target located at depths of 2, 3, and 4 mm, respectively. The contrast for both absorption and scattering coefficients is 3 for all cases. The black cross in (b) and the small black box in (c) indicate the exact location of the EEG dipole and DOT target, respectively. (d) Recorded 16-channel EEG data. (e) Recovered μa values along a transect crossing each center of the targets (z=2, 3, and 4 mm, respectively) for the images shown in (c).

Fig. 5.
Fig. 5.

(a) Geometry of phantoms with a target at a depth of 3 mm. (b) Reconstructed μa images from DOT for targets with contrasts of 3, 2, and 1.5 times for both absorption and scattering coefficients, respectively. The small black boxes in (b) indicate the exact target locations. (c) Recovered μa values along a transect crossing of the center of the targets from (b).

Fig. 6.
Fig. 6.

(a) Geometry of the phantoms with the target at different locations. The targets for all cases were embedded in the phantom at a depth of 3 mm. Reconstructed (b) ESL and (c) μa images from DOT when the target was located at the center of the phantom and with an offset along the Y axis of 4 and 10 mm, respectively. The contrast for both absorption and scattering coefficients is 3 for all cases. The black cross in (b) and the small black box in (c) indicate the exact locations of the EEG dipole and DOT target, respectively. (d) Recorded 16-channel EEG signals when the offset is 4 mm. (e) Recovered μa values along a transect crossing each center of the targets for the images shown in (c).

Metrics