Abstract

A smart laser scanning sampling head design is presented using an electronically controlled variable focal length lens to achieve the smallest sampling laser spot possible at target plane distances reaching 8 m. A proof-of-concept experiment is conducted using a 10 mW red 633 nm laser coupled with beam conditioning optics that includes an electromagnetically actuated deformable membrane liquid lens to demonstrate sampling laser spot radii under 1 mm over a target range of 20–800 cm. Applications for the proposed sampling head are diverse and include laser machining and component inspection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Son, H. Park, and K. H. Lee, “Automated laser scanning system for reverse engineering and inspection,” Int. J. Mach. Tools Manuf. 42, 889–897 (2002).
    [CrossRef]
  2. G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
    [CrossRef]
  3. D. Barber, J. Mills, and S. Smith-Voysey, “Geometric validation of a ground-based mobile laser scanning system,” ISPRS J. Photogramm. Remote Sens. 63, 128–141 (2008).
    [CrossRef]
  4. S. Fekete, M. Diederichs, and M. Lato, “Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels,” Tunn. Undergr. Space Technol. 25, 614–628 (2010).
    [CrossRef]
  5. R. Usamentiaga, J. Molleda, and D. F. García, “Fast and robust laser stripe extraction for 3D reconstruction in industrial environments,” Mach. Vis. Appl. 23, 179–196 (2012).
    [CrossRef]
  6. S. Werner, I. Neumann, K. C. Thienel, and O. Heunecke, “A fractal-based approach for the determination of concrete surfaces using laser scanning techniques: a comparison of two different measuring systems,” Mater. Struct. 46, 245–254 (2013).
    [CrossRef]
  7. V. Lombardoa, T. Marzullib, C. Pappalettereb, and P. Sforzaa, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
    [CrossRef]
  8. Z. Liu and D. Krys, “The use of laser range finder on a robotic platform for pipe inspection,” Mech. Syst. Signal Process. 31, 246–257 (2012).
    [CrossRef]
  9. T. J. Green, St. Marcus, and B. D. Colella, “Synthetic-aperture-radar imaging with a solid-state laser,” Appl. Opt. 34, 6941–6949 (1995).
    [CrossRef]
  10. N. A. Riza and S. A. Reza, “Noncontact distance sensor using spatial signal processing,” Opt. Lett. 34, 434–436 (2009).
    [CrossRef]
  11. N. A. Riza and S. A. Reza, “Smart agile lens remote optical sensor for three-dimensional object shape measurements,” Appl. Opt. 49, 1139–1150 (2010).
    [CrossRef]
  12. E. Hecht, Optics, 4th ed. (Pearson Addison-Wesley, 2002).
  13. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef]
  14. S-334 Miniature Piezo Tip/Tilt-Mirror Data Sheet, Physik Instruments, Germany, 2013.
  15. N. A. Riza, “Digital control polarization-based optical scanner,” U.S. patent6,031,658 (29February2000).
  16. Lin Li, M. Sobih, and P. L. Crouse, “Striation-free laser cutting of mild steel sheets,” CIRP Annals 56, 193–196 (2007).
    [CrossRef]

2013 (1)

S. Werner, I. Neumann, K. C. Thienel, and O. Heunecke, “A fractal-based approach for the determination of concrete surfaces using laser scanning techniques: a comparison of two different measuring systems,” Mater. Struct. 46, 245–254 (2013).
[CrossRef]

2012 (2)

Z. Liu and D. Krys, “The use of laser range finder on a robotic platform for pipe inspection,” Mech. Syst. Signal Process. 31, 246–257 (2012).
[CrossRef]

R. Usamentiaga, J. Molleda, and D. F. García, “Fast and robust laser stripe extraction for 3D reconstruction in industrial environments,” Mach. Vis. Appl. 23, 179–196 (2012).
[CrossRef]

2010 (2)

N. A. Riza and S. A. Reza, “Smart agile lens remote optical sensor for three-dimensional object shape measurements,” Appl. Opt. 49, 1139–1150 (2010).
[CrossRef]

S. Fekete, M. Diederichs, and M. Lato, “Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels,” Tunn. Undergr. Space Technol. 25, 614–628 (2010).
[CrossRef]

2009 (1)

2008 (1)

D. Barber, J. Mills, and S. Smith-Voysey, “Geometric validation of a ground-based mobile laser scanning system,” ISPRS J. Photogramm. Remote Sens. 63, 128–141 (2008).
[CrossRef]

2007 (1)

Lin Li, M. Sobih, and P. L. Crouse, “Striation-free laser cutting of mild steel sheets,” CIRP Annals 56, 193–196 (2007).
[CrossRef]

2003 (2)

G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
[CrossRef]

V. Lombardoa, T. Marzullib, C. Pappalettereb, and P. Sforzaa, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

2002 (1)

S. Son, H. Park, and K. H. Lee, “Automated laser scanning system for reverse engineering and inspection,” Int. J. Mach. Tools Manuf. 42, 889–897 (2002).
[CrossRef]

1995 (1)

1966 (1)

Barber, D.

D. Barber, J. Mills, and S. Smith-Voysey, “Geometric validation of a ground-based mobile laser scanning system,” ISPRS J. Photogramm. Remote Sens. 63, 128–141 (2008).
[CrossRef]

Colella, B. D.

Crouse, P. L.

Lin Li, M. Sobih, and P. L. Crouse, “Striation-free laser cutting of mild steel sheets,” CIRP Annals 56, 193–196 (2007).
[CrossRef]

Diederichs, M.

S. Fekete, M. Diederichs, and M. Lato, “Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels,” Tunn. Undergr. Space Technol. 25, 614–628 (2010).
[CrossRef]

Fekete, S.

S. Fekete, M. Diederichs, and M. Lato, “Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels,” Tunn. Undergr. Space Technol. 25, 614–628 (2010).
[CrossRef]

García, D. F.

R. Usamentiaga, J. Molleda, and D. F. García, “Fast and robust laser stripe extraction for 3D reconstruction in industrial environments,” Mach. Vis. Appl. 23, 179–196 (2012).
[CrossRef]

Grandori, F.

G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
[CrossRef]

Green, T. J.

Hecht, E.

E. Hecht, Optics, 4th ed. (Pearson Addison-Wesley, 2002).

Heunecke, O.

S. Werner, I. Neumann, K. C. Thienel, and O. Heunecke, “A fractal-based approach for the determination of concrete surfaces using laser scanning techniques: a comparison of two different measuring systems,” Mater. Struct. 46, 245–254 (2013).
[CrossRef]

Kogelnik, H.

Krys, D.

Z. Liu and D. Krys, “The use of laser range finder on a robotic platform for pipe inspection,” Mech. Syst. Signal Process. 31, 246–257 (2012).
[CrossRef]

Lato, M.

S. Fekete, M. Diederichs, and M. Lato, “Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels,” Tunn. Undergr. Space Technol. 25, 614–628 (2010).
[CrossRef]

Lee, K. H.

S. Son, H. Park, and K. H. Lee, “Automated laser scanning system for reverse engineering and inspection,” Int. J. Mach. Tools Manuf. 42, 889–897 (2002).
[CrossRef]

Li, Lin

Lin Li, M. Sobih, and P. L. Crouse, “Striation-free laser cutting of mild steel sheets,” CIRP Annals 56, 193–196 (2007).
[CrossRef]

Li, T.

Liu, Z.

Z. Liu and D. Krys, “The use of laser range finder on a robotic platform for pipe inspection,” Mech. Syst. Signal Process. 31, 246–257 (2012).
[CrossRef]

Lombardoa, V.

V. Lombardoa, T. Marzullib, C. Pappalettereb, and P. Sforzaa, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Marcus, St.

Marzullib, T.

V. Lombardoa, T. Marzullib, C. Pappalettereb, and P. Sforzaa, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Mills, J.

D. Barber, J. Mills, and S. Smith-Voysey, “Geometric validation of a ground-based mobile laser scanning system,” ISPRS J. Photogramm. Remote Sens. 63, 128–141 (2008).
[CrossRef]

Molleda, J.

R. Usamentiaga, J. Molleda, and D. F. García, “Fast and robust laser stripe extraction for 3D reconstruction in industrial environments,” Mach. Vis. Appl. 23, 179–196 (2012).
[CrossRef]

Neumann, I.

S. Werner, I. Neumann, K. C. Thienel, and O. Heunecke, “A fractal-based approach for the determination of concrete surfaces using laser scanning techniques: a comparison of two different measuring systems,” Mater. Struct. 46, 245–254 (2013).
[CrossRef]

Pappalettereb, C.

V. Lombardoa, T. Marzullib, C. Pappalettereb, and P. Sforzaa, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Parazzini, M.

G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
[CrossRef]

Park, H.

S. Son, H. Park, and K. H. Lee, “Automated laser scanning system for reverse engineering and inspection,” Int. J. Mach. Tools Manuf. 42, 889–897 (2002).
[CrossRef]

Ravazzani, P.

G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
[CrossRef]

Reza, S. A.

Riza, N. A.

Sforzaa, P.

V. Lombardoa, T. Marzullib, C. Pappalettereb, and P. Sforzaa, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Smith-Voysey, S.

D. Barber, J. Mills, and S. Smith-Voysey, “Geometric validation of a ground-based mobile laser scanning system,” ISPRS J. Photogramm. Remote Sens. 63, 128–141 (2008).
[CrossRef]

Sobih, M.

Lin Li, M. Sobih, and P. L. Crouse, “Striation-free laser cutting of mild steel sheets,” CIRP Annals 56, 193–196 (2007).
[CrossRef]

Son, S.

S. Son, H. Park, and K. H. Lee, “Automated laser scanning system for reverse engineering and inspection,” Int. J. Mach. Tools Manuf. 42, 889–897 (2002).
[CrossRef]

Svelto, C.

G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
[CrossRef]

Thienel, K. C.

S. Werner, I. Neumann, K. C. Thienel, and O. Heunecke, “A fractal-based approach for the determination of concrete surfaces using laser scanning techniques: a comparison of two different measuring systems,” Mater. Struct. 46, 245–254 (2013).
[CrossRef]

Tognola, G.

G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
[CrossRef]

Usamentiaga, R.

R. Usamentiaga, J. Molleda, and D. F. García, “Fast and robust laser stripe extraction for 3D reconstruction in industrial environments,” Mach. Vis. Appl. 23, 179–196 (2012).
[CrossRef]

Werner, S.

S. Werner, I. Neumann, K. C. Thienel, and O. Heunecke, “A fractal-based approach for the determination of concrete surfaces using laser scanning techniques: a comparison of two different measuring systems,” Mater. Struct. 46, 245–254 (2013).
[CrossRef]

Appl. Opt. (3)

CIRP Annals (1)

Lin Li, M. Sobih, and P. L. Crouse, “Striation-free laser cutting of mild steel sheets,” CIRP Annals 56, 193–196 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

G. Tognola, M. Parazzini, P. Ravazzani, F. Grandori, and C. Svelto, “3-D Acquisition and quantitative measurements of anatomical parts by optical scanning and image reconstruction from unorganized range data,” IEEE Trans. Instrum. Meas. 52, 1665–1673 (2003).
[CrossRef]

Int. J. Mach. Tools Manuf. (1)

S. Son, H. Park, and K. H. Lee, “Automated laser scanning system for reverse engineering and inspection,” Int. J. Mach. Tools Manuf. 42, 889–897 (2002).
[CrossRef]

ISPRS J. Photogramm. Remote Sens. (1)

D. Barber, J. Mills, and S. Smith-Voysey, “Geometric validation of a ground-based mobile laser scanning system,” ISPRS J. Photogramm. Remote Sens. 63, 128–141 (2008).
[CrossRef]

Mach. Vis. Appl. (1)

R. Usamentiaga, J. Molleda, and D. F. García, “Fast and robust laser stripe extraction for 3D reconstruction in industrial environments,” Mach. Vis. Appl. 23, 179–196 (2012).
[CrossRef]

Mater. Struct. (1)

S. Werner, I. Neumann, K. C. Thienel, and O. Heunecke, “A fractal-based approach for the determination of concrete surfaces using laser scanning techniques: a comparison of two different measuring systems,” Mater. Struct. 46, 245–254 (2013).
[CrossRef]

Mech. Syst. Signal Process. (1)

Z. Liu and D. Krys, “The use of laser range finder on a robotic platform for pipe inspection,” Mech. Syst. Signal Process. 31, 246–257 (2012).
[CrossRef]

Opt. Lasers Eng. (1)

V. Lombardoa, T. Marzullib, C. Pappalettereb, and P. Sforzaa, “A time-of-scan laser triangulation technique for distance measurements,” Opt. Lasers Eng. 39, 247–254 (2003).
[CrossRef]

Opt. Lett. (1)

Tunn. Undergr. Space Technol. (1)

S. Fekete, M. Diederichs, and M. Lato, “Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels,” Tunn. Undergr. Space Technol. 25, 614–628 (2010).
[CrossRef]

Other (3)

E. Hecht, Optics, 4th ed. (Pearson Addison-Wesley, 2002).

S-334 Miniature Piezo Tip/Tilt-Mirror Data Sheet, Physik Instruments, Germany, 2013.

N. A. Riza, “Digital control polarization-based optical scanner,” U.S. patent6,031,658 (29February2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Nonsmart (classic) point beam scanning using unconditioned laser beam propagation.

Fig. 2.
Fig. 2.

Proposed smart LSSH design.

Fig. 3.
Fig. 3.

Combined ECVFL and BL net focal length Fnet computation method via geometrical optics.

Fig. 4.
Fig. 4.

Finding target distance L via geometrical optics. (a) Classic imaging ray diagram. (b) Finding resultant image location of the two lens system via geometrical optics. Note that sib=L.

Fig. 5.
Fig. 5.

Plot of BL illuminated beam diameter Db versus target distance L for ECVFL-BL separation dS values of 4, 8 and 12 cm. ECVFL beam illumination diameter De=6mm.

Fig. 6.
Fig. 6.

Comparison of theoretical spot size for classic laser beam propagation (dashed lines) and smart LSSH (solid lines) versus target distance. Figure shows theory and experimental data (dots) plots for smart LSSH with dS values of (a) dS=4cm, (b) dS=8cm, and (c) dS=12cm.

Fig. 7.
Fig. 7.

R2 plots for the proposed smart LSSH at dS values of 4, 8, and 12 cm.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

1Fnet=1Fe+1FbdSFeFb.
2wmin=2.44×λ×(FnetDnet),
L=Fb(FedS)Fe+FbdS.
Fnet=dS(FbL)+LFbFb.
2wmin=2.44×λ×(dS(FbL)+LFbDnetFb).
wc=w01+(λ(d0+d1+dS+L)πw02)2,
R=wcwmin.
1so+1si=1F,
sib=soeFesoeFe.
Sie=Fe.
sob=dSFe.
sib=sobFbsobFb.
sib=(dSFe)FbdSFeFb.
L=Fb(FedS)Fe+FbdS,
Db=De+2dS×De|Fe|×2.

Metrics