Abstract

The community radiative transfer model (CRTM) has been implemented for clear and cloudy satellite radiance simulations in the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation data assimilation system for global and regional forecasting as well as reanalysis for climate studies. Clear-sky satellite radiances are successfully assimilated, while cloudy radiances need to be assimilated for improving precipitation and severe weather forecasting. However, cloud radiance calculations are much slower than the calculations for clear-sky radiance, and exceed our computational capacity for weather forecasting. In order to make cloud radiance assimilation affordable, cloud optical parameters at the band central wavelength are used in the CRTM (OPTRAN-CRTM) where the optical transmittance (OPTRAN) band model is applied. The approximation implies that only one radiative transfer solution for each band (i.e., channel) is needed, instead of typically more than 10,000 solutions that are required for a detailed line-by-line radiative transfer model (LBLRTM). This paper investigated the accuracy of the approximation and helps us to understand the error source. Two NOAA operational sensors, High Resolution Infrared Radiation Sounder/3 (HIRS/3) and Advanced Microwave Sounding Unit (AMSU), have been chosen for this investigation with both clear and cloudy cases. By comparing the CRTM cloud radiance calculations with the LBLRTM simulations, we found that the CRTM cloud radiance model can achieve accuracy better than 0.4 K for the IR sensor and 0.1 K for the microwave sensor. The results suggest that the CRTM cloud radiance calculations may be adequate to the operational satellite radiance assimilation for numerical forecast model. The accuracy using OPTRAN is much better than using the scaling method (SCALING-CRTM). In clear-sky applications, the scaling of the optical depth derived at nadir for brightness temperature calculation at the other direction may result in an error up to about 7 K for some HIRS/3 channels. Under cloudy conditions, SCALING-CRTM may result in an error of about 3.5 K.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Derber, “The use of radiance data in the NCEP global and regional data assimilation systems,” Proceedings of the Twelfth International TOVS Study Conference (2002).
  2. R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
    [CrossRef]
  3. R. Saunders, M. Matricardi, and P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
  4. T. J. Kleespies, P. van Delst, L. M. McMillin, and J. Derber, “Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model,” Appl. Opt. 43, 3103–3109 (2004).
    [CrossRef]
  5. L. M. McMillin and H. E. Fleming, “Atmospheric transmittance of an absorbing gas: a computationally fast and accurate transmittance model for absorbing gases with constant mixing ratios in inhomogeneous atmospheres,” Appl. Opt. 15, 358–363 (1976).
    [CrossRef]
  6. J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” Tech. Memo. (European Center for Medium Range Weather Forecasts, 1991).
  7. L. M. McMillin, J. J. Crone, M. D. Goldberg, and T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles,” Appl. Opt. 34, 6269–6274 (1995).
    [CrossRef]
  8. F. Weng, Y. Han, P. van Delst, Q. Liu, and B. Yan, “JCSDA community radiative transfer model (CRTM),” Technical Proceedings of Fourteenth International ATOVS Study Conference (2005).
  9. C. Simmer, Satellite Microwave Remote Sensing of Atmospheric Hydrological Parameters (Verlag, 1994).
  10. P. Yang, K. N. Liou, and P. W. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997).
    [CrossRef]
  11. M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
    [CrossRef]
  12. Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
    [CrossRef]
  13. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
    [CrossRef]
  14. R. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116, D08105 (2011).
    [CrossRef]
  15. B. Yan, F. Weng, and H. Meng, “Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit,” J. Geophys. Res. 113, D19206 (2008).
    [CrossRef]
  16. Q. Liu, F. Weng, and S. English, “An improved fast microwave water emissivity model,” IEEE Trans. Geosci. Remote Sens. 49, 1238–1250 (2011).
    [CrossRef]
  17. Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).
  18. P. Bauer, A. Geer, P. Lopez, and D. Salmond, “Direct 4D-Var assimilation of all-sky radiances. Part 1: implementation,” Q. J. R. Meteorol. Soc. 136, 1868–1885 (2010).
    [CrossRef]
  19. A. Geer, P. Bauer, and P. Lopez, “Lessons learnt from the operational 1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF,” Q. J. R. Meteorol. Soc. 134, 1513–1525 (2008).
    [CrossRef]
  20. A. McNally, “The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var,” Q. J. R. Meteorol. Soc. 135, 1214–1229 (2009).
    [CrossRef]
  21. A. McNally, “A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders,” Q. J. R. Meteorol. Soc. 128, 2551–2556 (2006).
    [CrossRef]
  22. H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).
  23. D. P. Edwards, “A general line-by-line atmospheric transmittance and radiance model,” Technical Note (National Center for Atmospheric Research, 1992).
  24. S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates II: application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
    [CrossRef]
  25. Y. Chen, Y. Han, and F. Weng, “Comparison of two transmittance algorithms in the community radiative transfer model: application to AVHRR,” J. Geophys. Res. 117, D06206 (2012).
    [CrossRef]
  26. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  27. M. Mishchenko, “Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics,” Appl. Opt. 41, 7114–7134 (2002).
    [CrossRef]
  28. P. W. Rosenkranz, “Water vapor microwave continuum absorption: a comparison of measurements and models,” Radio Sci. 33, 919–928 (1998).
    [CrossRef]
  29. P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).
  30. F. S. Binkowski and S. J. Roselle, “Models-3 community multiscale air quality (CMAQ) model aerosol component, 1, Model description,” J. Geophys. Res. 108, 4183–4201 (2003).
    [CrossRef]
  31. P. van Delst and X. Wu, “A high resolution infrared sea surface emissivity database for satellite applications,” Technical Proceedings of Eleventh International ATOVS Study Conference, Budapest, Hungary, September20–26 (2000), pp. 407–411.
  32. F. Weng, B. Yan, and N. C. Grody, “A microwave land emissivity model,” J. Geophys. Res. 106, 20115–20123 (2001).
    [CrossRef]
  33. Q. Liu and F. Weng, “Advanced doubling-adding method for radiative transfer in planetary atmospheres,” J. Atmos. Sci. 63, 3459–3465 (2006).
    [CrossRef]
  34. Q. Liu and F. Weng, “Using advanced matrix operator (AMOM) in community radiative transfer model,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 6, 1211–1218 (2013).
    [CrossRef]
  35. Q. Liu, “An analytical solution of transmission and reflection operators for homogeneous atmospheres,” Contrib. Atmos. Phys. 63, 128–133 (1990).
  36. A. V. Troitsky, A. M. Osharin, A. V. Korolev, and J. W. Strapp, “Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds,” J. Atmos. Sci. 60, 1608–1620 (2003).
    [CrossRef]
  37. Q. Liu and F. Weng, “Detecting warm core of hurricane from the special sensor microwave imager sounder,” Geophys. Res. Lett. 33, L06817 (2006).
    [CrossRef]

2013 (1)

Q. Liu and F. Weng, “Using advanced matrix operator (AMOM) in community radiative transfer model,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 6, 1211–1218 (2013).
[CrossRef]

2012 (1)

Y. Chen, Y. Han, and F. Weng, “Comparison of two transmittance algorithms in the community radiative transfer model: application to AVHRR,” J. Geophys. Res. 117, D06206 (2012).
[CrossRef]

2011 (3)

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

R. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116, D08105 (2011).
[CrossRef]

Q. Liu, F. Weng, and S. English, “An improved fast microwave water emissivity model,” IEEE Trans. Geosci. Remote Sens. 49, 1238–1250 (2011).
[CrossRef]

2010 (1)

P. Bauer, A. Geer, P. Lopez, and D. Salmond, “Direct 4D-Var assimilation of all-sky radiances. Part 1: implementation,” Q. J. R. Meteorol. Soc. 136, 1868–1885 (2010).
[CrossRef]

2009 (2)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[CrossRef]

A. McNally, “The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var,” Q. J. R. Meteorol. Soc. 135, 1214–1229 (2009).
[CrossRef]

2008 (2)

A. Geer, P. Bauer, and P. Lopez, “Lessons learnt from the operational 1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF,” Q. J. R. Meteorol. Soc. 134, 1513–1525 (2008).
[CrossRef]

B. Yan, F. Weng, and H. Meng, “Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit,” J. Geophys. Res. 113, D19206 (2008).
[CrossRef]

2007 (1)

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

2006 (3)

Q. Liu and F. Weng, “Detecting warm core of hurricane from the special sensor microwave imager sounder,” Geophys. Res. Lett. 33, L06817 (2006).
[CrossRef]

A. McNally, “A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders,” Q. J. R. Meteorol. Soc. 128, 2551–2556 (2006).
[CrossRef]

Q. Liu and F. Weng, “Advanced doubling-adding method for radiative transfer in planetary atmospheres,” J. Atmos. Sci. 63, 3459–3465 (2006).
[CrossRef]

2004 (1)

2003 (2)

A. V. Troitsky, A. M. Osharin, A. V. Korolev, and J. W. Strapp, “Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds,” J. Atmos. Sci. 60, 1608–1620 (2003).
[CrossRef]

F. S. Binkowski and S. J. Roselle, “Models-3 community multiscale air quality (CMAQ) model aerosol component, 1, Model description,” J. Geophys. Res. 108, 4183–4201 (2003).
[CrossRef]

2002 (2)

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

M. Mishchenko, “Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics,” Appl. Opt. 41, 7114–7134 (2002).
[CrossRef]

2001 (1)

F. Weng, B. Yan, and N. C. Grody, “A microwave land emissivity model,” J. Geophys. Res. 106, 20115–20123 (2001).
[CrossRef]

1999 (2)

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

R. Saunders, M. Matricardi, and P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

1998 (1)

P. W. Rosenkranz, “Water vapor microwave continuum absorption: a comparison of measurements and models,” Radio Sci. 33, 919–928 (1998).
[CrossRef]

1997 (1)

P. Yang, K. N. Liou, and P. W. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997).
[CrossRef]

1995 (2)

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates II: application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

L. M. McMillin, J. J. Crone, M. D. Goldberg, and T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and variable mixing ratios at variable viewing angles,” Appl. Opt. 34, 6269–6274 (1995).
[CrossRef]

1990 (1)

Q. Liu, “An analytical solution of transmission and reflection operators for homogeneous atmospheres,” Contrib. Atmos. Phys. 63, 128–133 (1990).

1976 (1)

Arnott, P. W.

P. Yang, K. N. Liou, and P. W. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997).
[CrossRef]

Baldridge, A. M.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[CrossRef]

Bates, T. S.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Bauer, P.

P. Bauer, A. Geer, P. Lopez, and D. Salmond, “Direct 4D-Var assimilation of all-sky radiances. Part 1: implementation,” Q. J. R. Meteorol. Soc. 136, 1868–1885 (2010).
[CrossRef]

A. Geer, P. Bauer, and P. Lopez, “Lessons learnt from the operational 1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF,” Q. J. R. Meteorol. Soc. 134, 1513–1525 (2008).
[CrossRef]

Binkowski, F. S.

F. S. Binkowski and S. J. Roselle, “Models-3 community multiscale air quality (CMAQ) model aerosol component, 1, Model description,” J. Geophys. Res. 108, 4183–4201 (2003).
[CrossRef]

Bormann, N.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Brunel, P.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

R. Saunders, M. Matricardi, and P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

Chen, Y.

Y. Chen, Y. Han, and F. Weng, “Comparison of two transmittance algorithms in the community radiative transfer model: application to AVHRR,” J. Geophys. Res. 117, D06206 (2012).
[CrossRef]

Chin, M.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Clough, S. A.

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates II: application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).

Collins, D.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Crone, J. J.

Derber, J.

T. J. Kleespies, P. van Delst, L. M. McMillin, and J. Derber, “Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model,” Appl. Opt. 43, 3103–3109 (2004).
[CrossRef]

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

J. Derber, “The use of radiance data in the NCEP global and regional data assimilation systems,” Proceedings of the Twelfth International TOVS Study Conference (2002).

Dube, D. J.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).

Duncan, B. N.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Durkee, P. A.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Edwards, D. P.

D. P. Edwards, “A general line-by-line atmospheric transmittance and radiance model,” Technical Note (National Center for Atmospheric Research, 1992).

English, S.

Q. Liu, F. Weng, and S. English, “An improved fast microwave water emissivity model,” IEEE Trans. Geosci. Remote Sens. 49, 1238–1250 (2011).
[CrossRef]

Eyre, J. R.

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” Tech. Memo. (European Center for Medium Range Weather Forecasts, 1991).

Flagan, R. C.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Fleming, H. E.

Gardner, M. E.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).

Gasso, S.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Geer, A.

P. Bauer, A. Geer, P. Lopez, and D. Salmond, “Direct 4D-Var assimilation of all-sky radiances. Part 1: implementation,” Q. J. R. Meteorol. Soc. 136, 1868–1885 (2010).
[CrossRef]

A. Geer, P. Bauer, and P. Lopez, “Lessons learnt from the operational 1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF,” Q. J. R. Meteorol. Soc. 134, 1513–1525 (2008).
[CrossRef]

Ginoux, P.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Goldberg, M. D.

Grody, N. C.

F. Weng, B. Yan, and N. C. Grody, “A microwave land emissivity model,” J. Geophys. Res. 106, 20115–20123 (2001).
[CrossRef]

Grove, C. I.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[CrossRef]

Han, Y.

Y. Chen, Y. Han, and F. Weng, “Comparison of two transmittance algorithms in the community radiative transfer model: application to AVHRR,” J. Geophys. Res. 117, D06206 (2012).
[CrossRef]

R. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116, D08105 (2011).
[CrossRef]

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

F. Weng, Y. Han, P. van Delst, Q. Liu, and B. Yan, “JCSDA community radiative transfer model (CRTM),” Technical Proceedings of Fourteenth International ATOVS Study Conference (2005).

Hannon, S.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Hegg, D.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Heilliette, S.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Higurashi, A.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Holben, B. N.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Hook, S. J.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[CrossRef]

Iacono, M. J.

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates II: application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

Kinne, S.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Kleespies, T. J.

Kneizys, F. X.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).

Kong, J. A.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

Korolev, A. V.

A. V. Troitsky, A. M. Osharin, A. V. Korolev, and J. W. Strapp, “Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds,” J. Atmos. Sci. 60, 1608–1620 (2003).
[CrossRef]

Lee, Y.-H.

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

Lin, H.-C.

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

Liou, K. N.

P. Yang, K. N. Liou, and P. W. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997).
[CrossRef]

Liu, Q.

Q. Liu and F. Weng, “Using advanced matrix operator (AMOM) in community radiative transfer model,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 6, 1211–1218 (2013).
[CrossRef]

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

R. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116, D08105 (2011).
[CrossRef]

Q. Liu, F. Weng, and S. English, “An improved fast microwave water emissivity model,” IEEE Trans. Geosci. Remote Sens. 49, 1238–1250 (2011).
[CrossRef]

Q. Liu and F. Weng, “Advanced doubling-adding method for radiative transfer in planetary atmospheres,” J. Atmos. Sci. 63, 3459–3465 (2006).
[CrossRef]

Q. Liu and F. Weng, “Detecting warm core of hurricane from the special sensor microwave imager sounder,” Geophys. Res. Lett. 33, L06817 (2006).
[CrossRef]

Q. Liu, “An analytical solution of transmission and reflection operators for homogeneous atmospheres,” Contrib. Atmos. Phys. 63, 128–133 (1990).

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

F. Weng, Y. Han, P. van Delst, Q. Liu, and B. Yan, “JCSDA community radiative transfer model (CRTM),” Technical Proceedings of Fourteenth International ATOVS Study Conference (2005).

Liu, X.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Liu, Z.

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

Livingston, J. M.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Logan, J. A.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Lopez, P.

P. Bauer, A. Geer, P. Lopez, and D. Salmond, “Direct 4D-Var assimilation of all-sky radiances. Part 1: implementation,” Q. J. R. Meteorol. Soc. 136, 1868–1885 (2010).
[CrossRef]

A. Geer, P. Bauer, and P. Lopez, “Lessons learnt from the operational 1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF,” Q. J. R. Meteorol. Soc. 134, 1513–1525 (2008).
[CrossRef]

Martin, R. V.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Masiello, G.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Matricardi, M.

R. Saunders, M. Matricardi, and P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

McMillin, L. M.

McNally, A.

A. McNally, “The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var,” Q. J. R. Meteorol. Soc. 135, 1214–1229 (2009).
[CrossRef]

A. McNally, “A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders,” Q. J. R. Meteorol. Soc. 128, 2551–2556 (2006).
[CrossRef]

Meng, H.

B. Yan, F. Weng, and H. Meng, “Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit,” J. Geophys. Res. 113, D19206 (2008).
[CrossRef]

Mishchenko, M.

Miskolczi, F.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Moncet, J.-L.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Nakajima, T.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Nielsen, K. E.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Noone, K. J.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Osharin, A. M.

A. V. Troitsky, A. M. Osharin, A. V. Korolev, and J. W. Strapp, “Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds,” J. Atmos. Sci. 60, 1608–1620 (2003).
[CrossRef]

Öström, E.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Quinn, P. K.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Rivera, G.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[CrossRef]

Roselle, S. J.

F. S. Binkowski and S. J. Roselle, “Models-3 community multiscale air quality (CMAQ) model aerosol component, 1, Model description,” J. Geophys. Res. 108, 4183–4201 (2003).
[CrossRef]

Rosenkranz, P. W.

P. W. Rosenkranz, “Water vapor microwave continuum absorption: a comparison of measurements and models,” Radio Sci. 33, 919–928 (1998).
[CrossRef]

Rothman, L. S.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).

Russell, L. M.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Russell, P. B.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Salmond, D.

P. Bauer, A. Geer, P. Lopez, and D. Salmond, “Direct 4D-Var assimilation of all-sky radiances. Part 1: implementation,” Q. J. R. Meteorol. Soc. 136, 1868–1885 (2010).
[CrossRef]

Saunders, R.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

R. Saunders, M. Matricardi, and P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

Schmid, B.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Schwartz, C. S.

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

Seinfeld, J. H.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Sherlock, V.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Shin, R. T.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

Simmer, C.

C. Simmer, Satellite Microwave Remote Sensing of Atmospheric Hydrological Parameters (Verlag, 1994).

Smith, H. J. P.

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).

Smith, P. J.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Strapp, J. W.

A. V. Troitsky, A. M. Osharin, A. V. Korolev, and J. W. Strapp, “Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds,” J. Atmos. Sci. 60, 1608–1620 (2003).
[CrossRef]

Strow, L.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Tomasi, C.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Torres, O.

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Treadon, R.

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

Troitsky, A. V.

A. V. Troitsky, A. M. Osharin, A. V. Korolev, and J. W. Strapp, “Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds,” J. Atmos. Sci. 60, 1608–1620 (2003).
[CrossRef]

Tsang, L.

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

Turner, D. S.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Uymin, G.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

van Delst, P.

T. J. Kleespies, P. van Delst, L. M. McMillin, and J. Derber, “Atmospheric transmittance of an absorbing gas. 6. OPTRAN status report and introduction to the NESDIS/NCEP community radiative transfer model,” Appl. Opt. 43, 3103–3109 (2004).
[CrossRef]

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

F. Weng, Y. Han, P. van Delst, Q. Liu, and B. Yan, “JCSDA community radiative transfer model (CRTM),” Technical Proceedings of Fourteenth International ATOVS Study Conference (2005).

P. van Delst and X. Wu, “A high resolution infrared sea surface emissivity database for satellite applications,” Technical Proceedings of Eleventh International ATOVS Study Conference, Budapest, Hungary, September20–26 (2000), pp. 407–411.

Vitale, V.

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Vogel, R.

R. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116, D08105 (2011).
[CrossRef]

von Engeln, A.

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Wang, T.

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

Weng, F.

Q. Liu and F. Weng, “Using advanced matrix operator (AMOM) in community radiative transfer model,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 6, 1211–1218 (2013).
[CrossRef]

Y. Chen, Y. Han, and F. Weng, “Comparison of two transmittance algorithms in the community radiative transfer model: application to AVHRR,” J. Geophys. Res. 117, D06206 (2012).
[CrossRef]

R. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116, D08105 (2011).
[CrossRef]

Q. Liu, F. Weng, and S. English, “An improved fast microwave water emissivity model,” IEEE Trans. Geosci. Remote Sens. 49, 1238–1250 (2011).
[CrossRef]

B. Yan, F. Weng, and H. Meng, “Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit,” J. Geophys. Res. 113, D19206 (2008).
[CrossRef]

Q. Liu and F. Weng, “Advanced doubling-adding method for radiative transfer in planetary atmospheres,” J. Atmos. Sci. 63, 3459–3465 (2006).
[CrossRef]

Q. Liu and F. Weng, “Detecting warm core of hurricane from the special sensor microwave imager sounder,” Geophys. Res. Lett. 33, L06817 (2006).
[CrossRef]

F. Weng, B. Yan, and N. C. Grody, “A microwave land emissivity model,” J. Geophys. Res. 106, 20115–20123 (2001).
[CrossRef]

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

F. Weng, Y. Han, P. van Delst, Q. Liu, and B. Yan, “JCSDA community radiative transfer model (CRTM),” Technical Proceedings of Fourteenth International ATOVS Study Conference (2005).

Wu, X.

P. van Delst and X. Wu, “A high resolution infrared sea surface emissivity database for satellite applications,” Technical Proceedings of Eleventh International ATOVS Study Conference, Budapest, Hungary, September20–26 (2000), pp. 407–411.

Yan, B.

B. Yan, F. Weng, and H. Meng, “Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit,” J. Geophys. Res. 113, D19206 (2008).
[CrossRef]

F. Weng, B. Yan, and N. C. Grody, “A microwave land emissivity model,” J. Geophys. Res. 106, 20115–20123 (2001).
[CrossRef]

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

F. Weng, Y. Han, P. van Delst, Q. Liu, and B. Yan, “JCSDA community radiative transfer model (CRTM),” Technical Proceedings of Fourteenth International ATOVS Study Conference (2005).

Yang, P.

P. Yang, K. N. Liou, and P. W. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997).
[CrossRef]

Appl. Opt. (4)

Contrib. Atmos. Phys. (1)

Q. Liu, “An analytical solution of transmission and reflection operators for homogeneous atmospheres,” Contrib. Atmos. Phys. 63, 128–133 (1990).

Geophys. Res. Lett. (1)

Q. Liu and F. Weng, “Detecting warm core of hurricane from the special sensor microwave imager sounder,” Geophys. Res. Lett. 33, L06817 (2006).
[CrossRef]

IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing (1)

Q. Liu and F. Weng, “Using advanced matrix operator (AMOM) in community radiative transfer model,” IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 6, 1211–1218 (2013).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

Q. Liu, F. Weng, and S. English, “An improved fast microwave water emissivity model,” IEEE Trans. Geosci. Remote Sens. 49, 1238–1250 (2011).
[CrossRef]

J. Atmos. Sci. (3)

M. Chin, P. Ginoux, S. Kinne, O. Torres, B. N. Holben, B. N. Duncan, R. V. Martin, J. A. Logan, A. Higurashi, and T. Nakajima, “Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sunphotometer measurements,” J. Atmos. Sci. 59, 461–483 (2002).
[CrossRef]

Q. Liu and F. Weng, “Advanced doubling-adding method for radiative transfer in planetary atmospheres,” J. Atmos. Sci. 63, 3459–3465 (2006).
[CrossRef]

A. V. Troitsky, A. M. Osharin, A. V. Korolev, and J. W. Strapp, “Polarization of thermal microwave atmospheric radiation due to scattering by ice particles in clouds,” J. Atmos. Sci. 60, 1608–1620 (2003).
[CrossRef]

J. Geophys. Res. (9)

F. S. Binkowski and S. J. Roselle, “Models-3 community multiscale air quality (CMAQ) model aerosol component, 1, Model description,” J. Geophys. Res. 108, 4183–4201 (2003).
[CrossRef]

P. Yang, K. N. Liou, and P. W. Arnott, “Extinction efficiency and single-scattering albedo of ice crystals in laboratory and natural cirrus clouds,” J. Geophys. Res. 102, 21825–21835 (1997).
[CrossRef]

F. Weng, B. Yan, and N. C. Grody, “A microwave land emissivity model,” J. Geophys. Res. 106, 20115–20123 (2001).
[CrossRef]

R. Saunders, P. Brunel, A. von Engeln, N. Bormann, L. Strow, S. Hannon, S. Heilliette, X. Liu, F. Miskolczi, Y. Han, G. Masiello, J.-L. Moncet, G. Uymin, V. Sherlock, and D. S. Turner, “A comparison of radiative transfer models for simulating AIRS radiances,” J. Geophys. Res. 112, D01S90 (2007).
[CrossRef]

Z. Liu, Q. Liu, H.-C. Lin, C. S. Schwartz, Y.-H. Lee, and T. Wang, “Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia,” J. Geophys. Res. 116, D23206 (2011).
[CrossRef]

R. Vogel, Q. Liu, Y. Han, and F. Weng, “Evaluating a satellite-derived global infrared land surface emissivity data set for use in radiative transfer modeling,” J. Geophys. Res. 116, D08105 (2011).
[CrossRef]

B. Yan, F. Weng, and H. Meng, “Retrieval of snow surface microwave emissivity from the advanced microwave sounding unit,” J. Geophys. Res. 113, D19206 (2008).
[CrossRef]

S. A. Clough and M. J. Iacono, “Line-by-line calculations of atmospheric fluxes and cooling rates II: application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons,” J. Geophys. Res. 100, 16519–16535 (1995).
[CrossRef]

Y. Chen, Y. Han, and F. Weng, “Comparison of two transmittance algorithms in the community radiative transfer model: application to AVHRR,” J. Geophys. Res. 117, D06206 (2012).
[CrossRef]

Q. J. R. Meteorol. Soc. (5)

P. Bauer, A. Geer, P. Lopez, and D. Salmond, “Direct 4D-Var assimilation of all-sky radiances. Part 1: implementation,” Q. J. R. Meteorol. Soc. 136, 1868–1885 (2010).
[CrossRef]

A. Geer, P. Bauer, and P. Lopez, “Lessons learnt from the operational 1D+4D-Var assimilation of rain- and cloud-affected SSM/I observations at ECMWF,” Q. J. R. Meteorol. Soc. 134, 1513–1525 (2008).
[CrossRef]

A. McNally, “The direct assimilation of cloud-affected satellite infrared radiances in the ECMWF 4D-Var,” Q. J. R. Meteorol. Soc. 135, 1214–1229 (2009).
[CrossRef]

A. McNally, “A note on the occurrence of cloud in meteorologically sensitive areas and the implications for advanced infrared sounders,” Q. J. R. Meteorol. Soc. 128, 2551–2556 (2006).
[CrossRef]

R. Saunders, M. Matricardi, and P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observation,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

Radio Sci. (1)

P. W. Rosenkranz, “Water vapor microwave continuum absorption: a comparison of measurements and models,” Radio Sci. 33, 919–928 (1998).
[CrossRef]

Remote Sens. Environ. (1)

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711–715 (2009).
[CrossRef]

Tellus, Ser. B (1)

P. A. Durkee, K. E. Nielsen, P. J. Smith, P. B. Russell, B. Schmid, J. M. Livingston, B. N. Holben, C. Tomasi, V. Vitale, D. Collins, R. C. Flagan, J. H. Seinfeld, K. J. Noone, E. Öström, S. Gasso, D. Hegg, L. M. Russell, T. S. Bates, and P. K. Quinn, “Regional aerosol optical depth characteristics from satellite observations: ACE-1, TARFOX and ACE-2 results,” Tellus, Ser. B 51B, 1–14 (1999).

Other (9)

L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).

H. J. P. Smith, D. J. Dube, M. E. Gardner, S. A. Clough, F. X. Kneizys, and L. S. Rothman, “FASCODE-fast atmospheric signature code (spectral transmittance and radiance),” Tech. Rep. (Visidyne Inc., 1978).

D. P. Edwards, “A general line-by-line atmospheric transmittance and radiance model,” Technical Note (National Center for Atmospheric Research, 1992).

F. Weng, Y. Han, P. van Delst, Q. Liu, and B. Yan, “JCSDA community radiative transfer model (CRTM),” Technical Proceedings of Fourteenth International ATOVS Study Conference (2005).

C. Simmer, Satellite Microwave Remote Sensing of Atmospheric Hydrological Parameters (Verlag, 1994).

Y. Han, P. van Delst, Q. Liu, F. Weng, B. Yan, R. Treadon, and J. Derber, “Community radiative transfer model (CRTM)—Version 1,” NOAA NESDIS Tech. Rep. (2006).

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” Tech. Memo. (European Center for Medium Range Weather Forecasts, 1991).

J. Derber, “The use of radiance data in the NCEP global and regional data assimilation systems,” Proceedings of the Twelfth International TOVS Study Conference (2002).

P. van Delst and X. Wu, “A high resolution infrared sea surface emissivity database for satellite applications,” Technical Proceedings of Eleventh International ATOVS Study Conference, Budapest, Hungary, September20–26 (2000), pp. 407–411.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Distribution of the BT and the sensor response function for NOAA HIRS/3.

Fig. 2.
Fig. 2.

Layer optical depths derived from band transmittances as a function of zenith angle at HIRS/3 channels 5 at 13.97 μm and 15 at 4.47 μm. The layer is 325 m thick at an altitude of about 300 hPa.

Fig. 3.
Fig. 3.

Difference of the BT between computed with and without scattering. The HIRS/3 channel 10 is centered at 12.5 μm. The HIRS/3 channel 19 is centered at 3.7 μm. A middle latitude summer atmospheric profile over an ocean surface with a wind speed of 5m/s is used. One thin layer (325 m) ice cloud is placed at about 300 hPa. The column cloud water content of the thin layer ice cloud is 0.03 mm is placed.

Fig. 4.
Fig. 4.

Difference of the BT between computed with and without scattering. The AMSU channels 4, 5 and 6 are the sounding channels. Rain cloud having a column water content of 1.5 mm is placed below 800 hPa.

Tables (7)

Tables Icon

Table 1. Differences in HIRS/3 BTs between SCALING-CRTM (SCAL) and LBL-CRTM (LBL) at Nighttime with the Surface Zenith Angle of 0°, 30°, and 60°a

Tables Icon

Table 2. Same as Table 1 Except at Daytime with a Solar Zenith Angle of 45°

Tables Icon

Table 3. Differences in HIRS/3 BTs between OPTRAN- and LBL-CRTMs in the Presence of a Cirrus Cloud of Approximately 1 km Thick at an Altitude of About 300 hPa and an Integrated Ice Water Content of 0.03 mma

Tables Icon

Table 4. Differences in HIRS/3 BTs between OPTRAN- and LBL-CRTMs in the Presence of a Cirrus Cloud of Approximately 1 km Thick at an Altitude of about 300 hPaa

Tables Icon

Table 5. Differences in HIRS/3 BTs between OPTRAN- and LBL-CRTMs in the Presence of a Rain Cloud Below 800 hPaa

Tables Icon

Table 6. Channel Parameters of NOAA AMSU (Left 4 Columns) and Comparisons of the BT Errors when the Channel Radiances are Computed Monochromatically at the Center of the Channel Band (Column 5) and Those Computed Using OPTRAN-CRTM (Column 6)a

Tables Icon

Table 7. Same as Table 5, Except for NOAA AMSU

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Tν(τν)=eτν/cos(θ),
τν=j=1N0zavj(z)ρj(z)dz,
I=Iνϕνdν,
T(τ)=eτ/cos(θ),
T(τ)=eτν/cos(θ)ϕνdν.
I=IνeτνϕνdνI0T(τ),

Metrics