Abstract

A direct-detection wind lidar that operates with a multimode laser has been developed and tested. The instrument exploits the light backscattered by particles using a Mach–Zehnder interferometer with an optical path difference matched to the free spectral range of the laser longitudinal modes. In addition to requiring no monomodal emission, the system requires no frequency locking between the interferometer and the laser. We report laboratory and atmospheric measurements that show that the lidar is capable of measuring the radial wind velocity with a systematic error lower than 1ms1 and a random error lower than 2ms1 for a signal-to-noise ratio of 100. The development is motivated by the possibility to probe wind with a compact system in planetary atmospheres.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Benedetti-Michellangeli, F. Congeduti, and G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
    [CrossRef]
  2. M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  3. V. J. Abreu, J. E. Barnes, and P. B. Hays, “Observations of winds with a incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
    [CrossRef]
  4. C. L. Korb, B. M. Gentry, and C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
    [CrossRef]
  5. Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
    [CrossRef]
  6. D. Morançais, F. Fabre, P. Berlioz, R. Mauer, and A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, 2000), pp. 15–18.
  7. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
    [CrossRef]
  8. D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer,” Appl. Opt. 43, 173–182 (2004).
    [CrossRef]
  9. M. Imaki and T. Kobayashi, “Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties,” Appl. Opt. 44, 6023–6030 (2005).
    [CrossRef]
  10. C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
    [CrossRef]
  11. S. H. Bloom, R. Kremer, P. A. Searcy, M. Rivers, J. Menders, and E. Korevaar, “Long-range, noncoherent laser Doppler velocimeter,” Opt. Lett. 16, 1794–1796 (1991).
    [CrossRef]
  12. Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-Q. Song, J. W. Hair, and C.-Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002).
    [CrossRef]
  13. D. Rees and I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355 nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
    [CrossRef]
  14. M. J. McGill, W. R. Skinner, and T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
    [CrossRef]
  15. D. Bruneau, “Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
    [CrossRef]
  16. B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995).
    [CrossRef]
  17. B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
    [CrossRef]
  18. R. L. Hilliard and G. G. Shepherd, “Wide-angle Michelson interferometer for measuring Doppler linewidths,” J. Opt. Soc. Am. 56, 362–369 (1966).
    [CrossRef]
  19. D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar using a Mach–Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42, 1101–1114 (2003).
    [CrossRef]
  20. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2421 (1999).
    [CrossRef]
  21. B. J. Conrath, “Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971,” Icarus 24, 36–46 (1975).
    [CrossRef]

2009

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

2005

2004

2003

2002

2001

1999

1997

1996

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[CrossRef]

1995

1992

1991

1990

1989

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

1975

B. J. Conrath, “Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971,” Icarus 24, 36–46 (1975).
[CrossRef]

1972

G. Benedetti-Michellangeli, F. Congeduti, and G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

1966

Abreu, V. J.

Barnes, J. E.

Benedetti-Michellangeli, G.

G. Benedetti-Michellangeli, F. Congeduti, and G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Berlioz, P.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, and A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, 2000), pp. 15–18.

Bloom, S. H.

Bruneau, D.

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Chanin, M. L.

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Chen, W.-B.

Congeduti, F.

G. Benedetti-Michellangeli, F. Congeduti, and G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Conrath, B. J.

B. J. Conrath, “Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971,” Icarus 24, 36–46 (1975).
[CrossRef]

Culoma, A.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, and A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, 2000), pp. 15–18.

Derycke, C.

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

Durand, E.

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, and A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, 2000), pp. 15–18.

Faure, B.

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

Fiocco, G.

G. Benedetti-Michellangeli, F. Congeduti, and G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

Garnier, A.

Gentry, B. M.

Grund, C. J.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Hair, J. W.

Hauchecorne, A.

Hays, P. B.

Hertzog, A.

Hilliard, R. L.

Howell, J.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Imaki, M.

Irgang, T. D.

Kobayashi, T.

M. Imaki and T. Kobayashi, “Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties,” Appl. Opt. 44, 6023–6030 (2005).
[CrossRef]

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[CrossRef]

Korb, C. L.

Korevaar, E.

Kremer, R.

Lemmerz, C.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Liu, J.-T.

Liu, Z.

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[CrossRef]

Liu, Z.-S.

Mauer, R.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, and A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, 2000), pp. 15–18.

Maurice, S.

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

McDermid, I. S.

McGill, M. J.

Menders, J.

Montmessin, F.

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

Morançais, D.

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, and A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, 2000), pp. 15–18.

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Pelon, J.

Pierce, R.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Porteneuve, J.

Rees, D.

Reitebuch, O.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

Rivers, M.

Rye, B. J.

Saccoccio, M.

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

Searcy, P. A.

She, C.-Y.

Shepherd, G. G.

Skinner, W. R.

Song, X.-Q.

Souprayen, C.

Stephens, M.

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

Weng, C. Y.

Wu, D.

Zhang, K.-L.

Appl. Opt.

D. Rees and I. S. McDermid, “Doppler lidar atmospheric wind sensor: reevaluation of a 355 nm incoherent Doppler lidar,” Appl. Opt. 29, 4133–4144 (1990).
[CrossRef]

C. L. Korb, B. M. Gentry, and C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4213 (1992).
[CrossRef]

V. J. Abreu, J. E. Barnes, and P. B. Hays, “Observations of winds with a incoherent lidar detector,” Appl. Opt. 31, 4509–4514 (1992).
[CrossRef]

M. J. McGill, W. R. Skinner, and T. D. Irgang, “Analysis techniques for the recovery of winds and backscatter coefficients from a multiple-channel incoherent Doppler lidar,” Appl. Opt. 36, 1253–1268 (1997).
[CrossRef]

B. J. Rye, “Comparative precision of distributed-backscatter Doppler lidars,” Appl. Opt. 34, 8341–8344 (1995).
[CrossRef]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38, 2410–2421 (1999).
[CrossRef]

D. Bruneau, “Mach–Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar,” Appl. Opt. 40, 391–399 (2001).
[CrossRef]

Z.-S. Liu, D. Wu, J.-T. Liu, K.-L. Zhang, W.-B. Chen, X.-Q. Song, J. W. Hair, and C.-Y. She, “Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter,” Appl. Opt. 41, 7079–7086 (2002).
[CrossRef]

D. Bruneau and J. Pelon, “Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar using a Mach–Zehnder interferometer: principle of operation and performance assessment,” Appl. Opt. 42, 1101–1114 (2003).
[CrossRef]

D. Bruneau, A. Garnier, A. Hertzog, and J. Porteneuve, “Wind-velocity lidar measurements by use of a Mach–Zehnder interferometer, comparison with a Fabry–Perot interferometer,” Appl. Opt. 43, 173–182 (2004).
[CrossRef]

M. Imaki and T. Kobayashi, “Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties,” Appl. Opt. 44, 6023–6030 (2005).
[CrossRef]

Geophys. Res. Lett.

M. L. Chanin, A. Garnier, A. Hauchecorne, and J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Icarus

B. J. Conrath, “Thermal structure of the Martian atmosphere during the dissipation of the dust storm of 1971,” Icarus 24, 36–46 (1975).
[CrossRef]

J. Atmos. Ocean. Technol.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part1: instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26, 2501–2515 (2009).
[CrossRef]

J. Atmos. Sci.

G. Benedetti-Michellangeli, F. Congeduti, and G. Fiocco, “Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar,” J. Atmos. Sci. 29, 906–910 (1972).
[CrossRef]

J. Opt. Soc. Am.

Opt. Lett.

Opt. Rev.

Z. Liu and T. Kobayashi, “Differential discrimination technique for incoherent Doppler lidar to measure atmospheric wind and backscatter ratio,” Opt. Rev. 3, 47–52 (1996).
[CrossRef]

Proc. SPIE

C. J. Grund, J. Howell, R. Pierce, and M. Stephens, “Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms,” Proc. SPIE 7312, 73120U (2009).
[CrossRef]

B. Faure, M. Saccoccio, S. Maurice, E. Durand, C. Derycke, F. Montmessin, and D. Bruneau, “Development of a compact laser for Chemcam instrument and potential use for wind measurements on Mars,” Proc. SPIE 7479, 74790N (2009).
[CrossRef]

Other

D. Morançais, F. Fabre, P. Berlioz, R. Mauer, and A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, Selected Papers Presented at the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (Ecole Polytechnique, 2000), pp. 15–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Mach–Zehnder interferometer: (a) principle of the QMZ, (b) prism arrangement, and (c) picture of the instrument. M, mirror; BS, beam-splitter; QWP, quarter-wave plate; IFP, input fiber port; CD, collimation doublet; P1; P2; P3, and P4, interferometer prisms; WP, Wollaston polarizers; FL, focalization lenses; D, detectors.

Fig. 2.
Fig. 2.

Transmission of the QMZ interferometer on two adjacent laser modes. T1, T2, T3, T4, transmission of the four channels, identical for all laser modes; FSR, laser free spectral range; Δ, interferometer OPD.

Fig. 3.
Fig. 3.

Lidar overall arrangement. BE, beam expander; SM, steering mirror; IS, integrating sphere; IF, interference filter; RF, reference fiber; SF, signal fiber; DL, delay line; FC, fiber coupler; MS, mode scrambler.

Fig. 4.
Fig. 4.

Reference amplitude (a.u.) as a function of shot number. (a) Record of the four interferometer channels. (b) Comparison between recorded and simulated reference amplitudes (a.u) for channel 1.

Fig. 5.
Fig. 5.

Apparent speed measured during laboratory tests of stability.

Fig. 6.
Fig. 6.

Measured wind speed with lidar vertical pointing.

Fig. 7.
Fig. 7.

North component of horizontal wind speed. Comparison between lidar and radio sounding.

Fig. 8.
Fig. 8.

Time series of recorded profiles: (a) logarithm of range corrected signal (a.u) and (b) BPR.

Fig. 9.
Fig. 9.

(a) Time series of radial wind speed profiles and (b) vertical wind speed profiles in clear air (blue) and during precipitations (red).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δ=cFSR,
S1=a1ST4[1+M1Masin(ϕ)]S2=a2ST4[1+M2Masin(ϕ+π/2+ε)]S3=a3ST4[1+M3Masin(ϕ+π)]S4=a4ST4[1+M4Masin(ϕ+3π/2+ε)],
ϕ=2πΔνc,
M=exp[(πδνΔ2ln2c)2].
Ma=βpβp+βmMp+βmβp+βmMm,
Ma=RpMp
ST=4iSiaiMi/iMi1,
Q=q1+jq2=STMaejϕ,
q1=4S3/a3S1/a1M3+M1,q2=4(S2/a2S4/a4M2+M4q1sinε)/cosε.
ϕ=arg(QST).
VR=cλ4πΔ(ϕsϕr),
Rp=|QST|.

Metrics