Abstract

Phase shifting interferometry relies on sets of interferograms taken at multiple known phase offsets to deduce the instantaneous phase of a quasi-static fringe pattern. The traditional method for introducing these phase shifts has been either to step a mirror, and measure the fringe pattern at each step, or to scan a mirror, integrating the fringe pattern for discrete time intervals while the fringes “move” on the detector. A stepping mirror eliminates this fringe smear but has typically required a closed-loop controller to ensure that the optical path introduced is accurately known. Furthermore, implementing rapid stepping of a moderately sized optic can prove difficult if the fringe phase needs to be measured on a short time scale. We report results demonstrating very fast (>100Hz) and precise phase shifting using a piezomodulated mirror operated in open-loop without any position feedback. Our method exploits the use of a synthetic driving waveform that is optimized to match the complex frequency response of the modulator and its supported optic. For phase measurements in the near-infrared at 2.15 μm, and with a time between steps as small as 0.2 ms, we report errors below λ/100 in the desired position of our optic, i.e., an effective optical path difference error of λ/55. For applications in near-infrared stellar interferometry, this implies an enhancement in the fringe-tracking sensitivity of roughly 20% (in the photon-limited regime) over that which is conventionally realized using a swept mirror.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Error sources and algorithms for white-light fringe estimation at low light levels

Mark Milman and Scott Basinger
Appl. Opt. 41(14) 2655-2671 (2002)

Development of a line-scan CCD-based fringe tracker for optical interferometry

Agustí Pintó and Ferran Laguarta
Appl. Opt. 45(26) 6694-6701 (2006)

Application of geometric phase techniques to stellar interferometry

William J. Tango and John Davis
Appl. Opt. 35(4) 621-623 (1996)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription