Abstract

In this article, we provide a method to improve the depth resolution of wide-field depth-resolved wavenumber-scanning interferometry (DRWSI), because its depth resolution is limited by the range of the wavenumber scanning and mode hopping of the light source. An optical wedge is put into the optical path to measure the series of the wavenumber on time using a 2D spatial Fourier transform (FT) of the interferograms. Those uncorrelated multiple bands of the wavenumbers due to mode hopping of the diode laser can be synthesized into one band, to enlarge the range of the wavenumber scanning. A random-sampling FT is put forward to evaluate the distribution of frequencies and phases of the multiple surfaces measured. The benefit is that the depth resolution of the DRWSI is enhanced significantly with a higher signal-to-noise ratio. Because of its simplicity and practicability, this method broadens the way to employing multiple different lasers or lasers with mode hopping as the light sources in the DRWSI.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription