Abstract

We theoretically study a single-ring-resonator-based add/drop interferometer to achieve tunable Fano resonance. The Fano resonance results from the interference of two resonant beams propagating in the ring resonator. The line shapes of the Fano resonance are tunable by controlling the coupling coefficients between the waveguide and ring resonator. The spectra of the drop port and through port of the add/drop interferometer are horizontally mirror-symmetric. A box-like spectral response can be produced with the proper coupling coefficient owing to the double resonances. When the phase difference between the two light inputs to the add/drop interferometer is compensated, a doubled free spectral range can be obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. D. Zhang, H. Tian, X. N. Zhang, N. Wang, J. Zhang, H. Wu, and P. Yuan, “Experimental evidence of enhanced rotation sensing in a slow-light structure,” Opt. Lett. 35, 691–693 (2010).
    [CrossRef]
  2. X. Q. Fan, “Silicon dual-ring modulator,” Opt. Express 17, 20783–20793 (2009).
    [CrossRef]
  3. P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
    [CrossRef]
  4. B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring resonator coupled lasers,” Appl. Phys. Lett. 79, 3561–3563 (2001).
    [CrossRef]
  5. L. Y. Mario and M. K. Chin, “Optical buffer with higher delay-bandwidth product in a two-ring system,” Opt. Express 16, 1796–1807 (2008).
    [CrossRef]
  6. C. Q. Yu, Y. D. Zhang, X. N. Zhang, K. Y. Wang, C. B. Yao, P. Yuan, and Y. D. Guan, “Nested fiber ring resonator enhanced Mach–Zehnder interferometer for temperature sensing,” Appl. Opt. 51, 8873–8876 (2012).
    [CrossRef]
  7. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
    [CrossRef]
  8. C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
    [CrossRef]
  9. S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
    [CrossRef]
  10. F. Wang, X. Wang, H. F. Zhou, Q. Zhou, Y. L. Hao, X. Q. Jiang, M. H. Wang, and J. Y. Yang, “Fano-resonance-based Mach–Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17, 7708–7716 (2009).
    [CrossRef]
  11. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14, 12770–12781 (2006).
    [CrossRef]
  12. T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
    [CrossRef]
  13. Y. Lu, J. Q. Yao, X. F. Li, and P. Wang, “Tunable asymmetrical Fano resonance and bistability in a microcavity-resonator-coupled Mach–Zehnder interferometer,” Opt. Lett. 30, 3069–3071 (2005).
    [CrossRef]
  14. A. C. Ruege and R. M. Reano, “Sharp Fano resonances from a two-mode waveguide coupled to a single-mode ring resonator,” J. Lightwave Technol. 28, 2964–2968 (2010).
    [CrossRef]
  15. S. Darmawan, Y. M. Landobasa, and M. K. Chin, “Nested Mach–Zehnder interferometer,” Opt. Express 15, 437–448 (2007).
    [CrossRef]
  16. J. B. Feng, Q. Q. Li, and Z. P. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett. 23, 79–81 (2011).
    [CrossRef]
  17. S. Darmawan, Y. M. Landobasa, and T. Mei, “Coupling-induced phase shift in a microring-coupled Mach–Zehnder interferometer,” Opt. Lett. 35, 238–240 (2010).
    [CrossRef]

2013 (1)

T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
[CrossRef]

2012 (2)

C. Q. Yu, Y. D. Zhang, X. N. Zhang, K. Y. Wang, C. B. Yao, P. Yuan, and Y. D. Guan, “Nested fiber ring resonator enhanced Mach–Zehnder interferometer for temperature sensing,” Appl. Opt. 51, 8873–8876 (2012).
[CrossRef]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[CrossRef]

2011 (1)

J. B. Feng, Q. Q. Li, and Z. P. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett. 23, 79–81 (2011).
[CrossRef]

2010 (3)

2009 (2)

2008 (1)

2007 (1)

2006 (1)

2005 (1)

2002 (1)

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[CrossRef]

2001 (1)

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring resonator coupled lasers,” Appl. Phys. Lett. 79, 3561–3563 (2001).
[CrossRef]

2000 (1)

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Absil, P. P.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

Bowers, J. E.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring resonator coupled lasers,” Appl. Phys. Lett. 79, 3561–3563 (2001).
[CrossRef]

Chin, M. K.

Darmawan, S.

Fan, S. H.

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[CrossRef]

Fan, X. Q.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Feng, J. B.

J. B. Feng, Q. Q. Li, and Z. P. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett. 23, 79–81 (2011).
[CrossRef]

Guan, Y. D.

Hao, Y. L.

Ho, P.-T.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

Hryniewicz, J. V.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

Hu, T.

T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
[CrossRef]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[CrossRef]

Jiang, X. Q.

Joneckis, L. G.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

Landobasa, Y. M.

Li, Q. Q.

J. B. Feng, Q. Q. Li, and Z. P. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett. 23, 79–81 (2011).
[CrossRef]

Li, X. F.

Little, B. E.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

Liu, B.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring resonator coupled lasers,” Appl. Phys. Lett. 79, 3561–3563 (2001).
[CrossRef]

Lu, Y.

Mario, L. Y.

Mei, T.

Qiu, C.

T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
[CrossRef]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[CrossRef]

Qiu, H. Y.

T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
[CrossRef]

Reano, R. M.

Ruege, A. C.

Shakouri, A.

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring resonator coupled lasers,” Appl. Phys. Lett. 79, 3561–3563 (2001).
[CrossRef]

Tian, H.

Wang, F.

T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
[CrossRef]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[CrossRef]

F. Wang, X. Wang, H. F. Zhou, Q. Zhou, Y. L. Hao, X. Q. Jiang, M. H. Wang, and J. Y. Yang, “Fano-resonance-based Mach–Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17, 7708–7716 (2009).
[CrossRef]

Wang, K. Y.

Wang, M. H.

Wang, N.

Wang, P.

Wang, X.

Wilson, R. A.

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

Wu, H.

Yang, J.

C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[CrossRef]

Yang, J. Y.

Yao, C. B.

Yao, J. Q.

Yu, C. Q.

Yu, P.

T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
[CrossRef]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[CrossRef]

Yuan, P.

Zhang, J.

Zhang, X. N.

Zhang, Y. D.

Zhou, H. F.

Zhou, Q.

Zhou, Z. P.

J. B. Feng, Q. Q. Li, and Z. P. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett. 23, 79–81 (2011).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

T. Hu, P. Yu, C. Qiu, H. Y. Qiu, and F. Wang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102, 011112 (2013).
[CrossRef]

B. Liu, A. Shakouri, and J. E. Bowers, “Passive microring resonator coupled lasers,” Appl. Phys. Lett. 79, 3561–3563 (2001).
[CrossRef]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Q. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101, 021110 (2012).
[CrossRef]

S. H. Fan, “Sharp asymmetric line shapes in side-coupled waveguide cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. B. Feng, Q. Q. Li, and Z. P. Zhou, “Single ring interferometer configuration with doubled free-spectral range,” IEEE Photon. Technol. Lett. 23, 79–81 (2011).
[CrossRef]

P. P. Absil, J. V. Hryniewicz, B. E. Little, R. A. Wilson, L. G. Joneckis, and P.-T. Ho, “Compact microring notch filters,” IEEE Photon. Technol. Lett. 12, 398–400 (2000).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (5)

Opt. Lett. (3)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of a single-ring-resonator-based add/drop interferometer.

Fig. 2.
Fig. 2.

Transmissions of through port of add/drop interferometer as a function of round-trip phase shift with intensity self-coupling coefficient R equal to 0.99 (black curve with circles), 0.9 (red curve with triangles), 0.7 (blue curve with squares) and 0.5 (solid green curve) and a=0.98.

Fig. 3.
Fig. 3.

(a) Transmissions of through port (dip) and drop port (peak) of the add/drop filter with a=0.98 and R=0.99 (black curve with circles), 0.9 (red curve with triangles), 0.7 (blue curve with squares), 0.5 (solid green curve). (b) Cosine of phase difference between the two resonant beams in the through port of the add/drop interferometer where L1 and L2 are equal.

Fig. 4.
Fig. 4.

Transmissions of through port (red curve with squares) and drop port (blue curve with circles) of the add/drop interferometer as a function of round-trip phase shift with R=0.7 and a=0.98.

Fig. 5.
Fig. 5.

Transmissions of the through port in add/drop interferometer with intensity self-coupling coefficient R equal to 0.4 (black curve with triangles), 0.3 (red curve with circles), 0.25 (blue curve with stars) and 0.18 (solid green curve), respectively.

Fig. 6.
Fig. 6.

Transmissions of the through port in the add/drop interferometer with a=0.98: (a) R=0.99, (b) R=0.98, (c) R=0.9, and (d) R=0.7.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E1=22Ein,
E2=22Einexp(iπ2),
E3=E1exp(iβL1),
E4=E2exp(iβL2),
E5=rraexp(iϕ)1r2aexp(iϕ)E3+t2aexp(iϕ/2)1r2aexp(iϕ)E4,
E6=rraexp(iϕ)1r2aexp(iϕ)E4+t2aexp(iϕ/2)1r2aexp(iϕ)E3,
τ=E5Ein=Texp(iΦT),
d=E6Ein=Dexp(iΦD),
T=12(X+Y+2XYcos(Δδ1)),
D=12(X+Y+2XYcos(Δδ2)),
X=|rraexp(iϕ)1r2aexp(iϕ)|2,
Y=|t2aexp(iϕ/2)1r2aexp(iϕ)|2,
Δδ1=arctan[asin(ϕ)1acos(ϕ)]+β(L1L2)πϕ2π2,
Δδ2=arctan[asin(ϕ)1acos(ϕ)]β(L1L2)πϕ2+π2,
Δδ1=Δδ2=ϕm2π=(m+1)π.

Metrics