Abstract

Surface-enhanced electromagnetic response in the resonant regions of split-ring resonators offers a sensitive way to probe the surface dipoles formed by alkanethiol molecules with a terahertz wave by a differential transmission (DT) interrogation method. The DT signal mainly comes from the interaction between alkanethiols and metamaterials by electron transfer and/or the variation of the dielectric constant. The Lorentz model is used to demonstrate the principle of DT interrogation theoretically, which suggests the variation of both frequency and damping of resonance can be captured cooperatively. This method has been employed to experimentally demonstrate the sensing feasibility for the chain length dependence of the alkanethiol molecules. Numerical simulations confirm that the enhancement is large at the gap and corner regions of this kind of metamaterials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [CrossRef]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [CrossRef]
  4. Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007).
    [CrossRef]
  5. C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, “Metamaterial localized resonance sensors: prospects and limitations,” Opt. Express 18, 25075–25080 (2010).
    [CrossRef]
  6. N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
    [CrossRef]
  7. X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
    [CrossRef]
  8. X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
    [CrossRef]
  9. I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
    [CrossRef]
  10. C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
    [CrossRef]
  11. H. J. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave Regime,” J. Appl. Phys. 108, 014908 (2010).
    [CrossRef]
  12. Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
    [CrossRef]
  13. X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
    [CrossRef]
  14. Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, and T.-J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18, 9561–9569 (2010).
    [CrossRef]
  15. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17, 1107–1115 (2009).
    [CrossRef]
  16. H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
    [CrossRef]
  17. M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
    [CrossRef]
  18. G. Kumar, A. Cui, S. Pandey, and A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19, 1072–1080 (2011).
    [CrossRef]
  19. H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
    [CrossRef]
  20. H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
    [CrossRef]
  21. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
    [CrossRef]
  22. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
    [CrossRef]
  23. S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
    [CrossRef]
  24. S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010).
    [CrossRef]
  25. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
    [CrossRef]
  26. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
    [CrossRef]
  27. W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
    [CrossRef]
  28. R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
    [CrossRef]
  29. R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
    [CrossRef]
  30. X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
    [CrossRef]
  31. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
    [CrossRef]
  32. X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006).
    [CrossRef]
  33. X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
    [CrossRef]
  34. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
    [CrossRef]
  35. H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006).
    [CrossRef]
  36. G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
    [CrossRef]
  37. L. S. Jung and C. T. Campbell, “Sticking probabilities in adsorption from liquid solutions: alkylthiols on gold,” Phys. Rev. Lett. 84, 5164–5167 (2000).
    [CrossRef]
  38. U. MØller, J. R. Folkenberg, and P. U. Jepsen, “Dielectric properties of water in butter and water–AOT–heptane systems measured using terahertz time-domain spectroscopy,” Appl. Spectrosc. 64, 1028–1036 (2010).
    [CrossRef]
  39. B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
    [CrossRef]
  40. D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
    [CrossRef]
  41. C.-X. Wu and M. Iwamoto, “Calculation of the dielectric constant of monolayer films with dielectric anisotropy,” Phys. Rev. B 55, 10922–10930 (1997).
    [CrossRef]
  42. L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008).
    [CrossRef]
  43. Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
    [CrossRef]
  44. M. Knupfer and G. Paasch, “Origin of the interface dipole at interfaces between undoped organic semiconductors and metals,” J. Vac. Sci. Technol. A 23, 1072–1077 (2005).
    [CrossRef]

2013 (3)

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

2012 (2)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
[CrossRef]

2011 (6)

G. Kumar, A. Cui, S. Pandey, and A. Nahata, “Planar terahertz waveguides based on complementary split ring resonators,” Opt. Express 19, 1072–1080 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
[CrossRef]

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

2010 (6)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

H. J. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave Regime,” J. Appl. Phys. 108, 014908 (2010).
[CrossRef]

S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010).
[CrossRef]

Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, and T.-J. Yen, “A multi-functional plasmonic biosensor,” Opt. Express 18, 9561–9569 (2010).
[CrossRef]

U. MØller, J. R. Folkenberg, and P. U. Jepsen, “Dielectric properties of water in butter and water–AOT–heptane systems measured using terahertz time-domain spectroscopy,” Appl. Spectrosc. 64, 1028–1036 (2010).
[CrossRef]

C. Jeppesen, S. Xiao, N. A. Mortensen, and A. Kristensen, “Metamaterial localized resonance sensors: prospects and limitations,” Opt. Express 18, 25075–25080 (2010).
[CrossRef]

2009 (5)

B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, and N. P. Johnson, “Asymmetric split ring resonators for optical sensing of organic materials,” Opt. Express 17, 1107–1115 (2009).
[CrossRef]

M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
[CrossRef]

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[CrossRef]

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

2008 (6)

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008).
[CrossRef]

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

2007 (5)

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

2006 (3)

X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006).
[CrossRef]

H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006).
[CrossRef]

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

2005 (1)

M. Knupfer and G. Paasch, “Origin of the interface dipole at interfaces between undoped organic semiconductors and metals,” J. Vac. Sci. Technol. A 23, 1072–1077 (2005).
[CrossRef]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

2003 (1)

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

2001 (2)

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

2000 (1)

L. S. Jung and C. T. Campbell, “Sticking probabilities in adsorption from liquid solutions: alkylthiols on gold,” Phys. Rev. Lett. 84, 5164–5167 (2000).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1997 (1)

C.-X. Wu and M. Iwamoto, “Calculation of the dielectric constant of monolayer films with dielectric anisotropy,” Phys. Rev. B 55, 10922–10930 (1997).
[CrossRef]

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Agrafiotis, S.

Akkerman, H. B.

H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006).
[CrossRef]

Alloway, D. M.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Al-Naib, I. A. I.

W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Ambrosch-Draxl, C.

L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008).
[CrossRef]

Andreev, G. O.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Aouani, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Armstrong, N. R.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Averitt, R. D.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Bartal, G.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[CrossRef]

Basov, D. N.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Beruete, M.

Bettiol, A. A.

S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

Blom, P. W. M.

H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006).
[CrossRef]

Bolivar, P. H.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

Brenckle, M. A.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Brener, I.

Campbell, C. T.

L. S. Jung and C. T. Campbell, “Sticking probabilities in adsorption from liquid solutions: alkylthiols on gold,” Phys. Rev. Lett. 84, 5164–5167 (2000).
[CrossRef]

Cao, W.

W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

Chang, Y.-T.

Chen, C.-K.

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

Chieffo, L. R.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Cho, S. Y.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Chowdhury, D. R.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

Colorado, R.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Cubukcu, E.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[CrossRef]

Cui, A.

De Boer, B.

H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006).
[CrossRef]

De La Rue, R. M.

De Leeuw, D. M.

H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006).
[CrossRef]

Debus, C.

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

Djuric, Z.

Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007).
[CrossRef]

Dou, F.

X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
[CrossRef]

Driscoll, T.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Falcone, F.

Fan, K. B.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Feng, H.

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Folkenberg, J. R.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Graham, A. L.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Gruhn, N. E.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Gu, C.

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Gu, C. Z.

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006).
[CrossRef]

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

Gu, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Gu, J. Q.

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

Han, J.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Han, J. G.

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

Hayashi, A.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Hayashi, S.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

He, M. X.

Hegnerova, K.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

Heimel, G.

L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008).
[CrossRef]

Hofmann, M.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Homola, J.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Hong, M. H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

Ingber, D. E.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
[CrossRef]

Iwamoto, M.

C.-X. Wu and M. Iwamoto, “Calculation of the dielectric constant of monolayer films with dielectric anisotropy,” Phys. Rev. B 55, 10922–10930 (1997).
[CrossRef]

Jakšic, O.

Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007).
[CrossRef]

Jakšic, Z.

Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007).
[CrossRef]

Jansen, C.

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Jeppesen, C.

Jepsen, P. U.

Jiang, X.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
[CrossRef]

Johnson, N. P.

Jokerst, N. M.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Jung, L. S.

L. S. Jung and C. T. Campbell, “Sticking probabilities in adsorption from liquid solutions: alkylthiols on gold,” Phys. Rev. Lett. 84, 5164–5167 (2000).
[CrossRef]

Kaplan, D. L.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Kato, E.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Kawai, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Kawase, K.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Khokhar, A. Z.

Kment, C.

Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007).
[CrossRef]

Knupfer, M.

M. Knupfer and G. Paasch, “Origin of the interface dipole at interfaces between undoped organic semiconductors and metals,” J. Vac. Sci. Technol. A 23, 1072–1077 (2005).
[CrossRef]

Koch, M.

R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

Kristensen, A.

Kumar, G.

Lahiri, B.

Lai, Y.-C.

Lee, H. J.

H. J. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave Regime,” J. Appl. Phys. 108, 014908 (2010).
[CrossRef]

Lee, H.-J.

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

Lee, P. A.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Lee, T. R.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Li, C.

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

Li, C.-T.

Li, D.

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Li, F.

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

Liu, H. M.

X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
[CrossRef]

Liu, M.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Lu, X.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Lu, X. C.

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

Ma, X. W.

X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
[CrossRef]

Maier, S. A.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
[CrossRef]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

McMeekin, S. G.

Miyamaru, F.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

MØller, U.

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

Mortensen, N. A.

Nahata, A.

Navarro-Cia, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

M. Navarro-Cia, M. Beruete, S. Agrafiotis, F. Falcone, M. Sorolla, and S. A. Maier, “Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms,” Opt. Express 17, 18184–18195 (2009).
[CrossRef]

O’Hara, J. F.

Ogawa, Y.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Omenetto, F. G.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Ostuni, E.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
[CrossRef]

Otani, C.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

Paasch, G.

M. Knupfer and G. Paasch, “Origin of the interface dipole at interfaces between undoped organic semiconductors and metals,” J. Vac. Sci. Technol. A 23, 1072–1077 (2005).
[CrossRef]

Palit, S.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

Pan, X. C.

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

Pandey, S.

Park, Y. S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Peng, B.

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Quan, B. G.

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006).
[CrossRef]

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

Rahmani, M.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

Romaner, L.

L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008).
[CrossRef]

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Siebert, S. M.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Singh, R.

W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

Sipova, H.

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

Smirnova, E.

Smith, D. L.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Smith, D. R.

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Sorolla, M.

Strikwerda, A. C.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Sun, Y.

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Takayama, S.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
[CrossRef]

Tao, H.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Taylor, A. J.

Tian, Z.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

Vysocki, V. H.

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

Wang, L.

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006).
[CrossRef]

Wang, Q.

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

Wang, S. J.

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Whitesides, G. M.

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Wong, L. M.

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Wu, C.-X.

C.-X. Wu and M. Iwamoto, “Calculation of the dielectric constant of monolayer films with dielectric anisotropy,” Phys. Rev. B 55, 10922–10930 (1997).
[CrossRef]

Wu, X. J.

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

Xia, X.

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Xia, X. X.

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

Xiao, S.

Xing, Q.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Xiong, Q. H.

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Xu, X. L.

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

X. L. Xu, B. G. Quan, C. Z. Gu, and L. Wang, “Bianisotropic response of microfabricated metamaterials in the terahertz region,” J. Opt. Soc. Am. B 23, 1174–1180 (2006).
[CrossRef]

Yang, H.

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

Yang, H. F.

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

Yang, Y. P.

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Yen, T.-J.

Yoo, K. H.

H. J. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave Regime,” J. Appl. Phys. 108, 014908 (2010).
[CrossRef]

Yook, J. G.

H. J. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave Regime,” J. Appl. Phys. 108, 014908 (2010).
[CrossRef]

Yook, J.-G.

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

Yoshida, H.

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

Zhang, J.

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Zhang, Q.

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Zhang, S.

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[CrossRef]

Zhang, W.

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

Zhang, W. L.

W. Cao, R. Singh, I. A. I. Al-Naib, M. X. He, A. J. Taylor, and W. L. Zhang, “Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials,” Opt. Lett. 37, 3366–3368 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, M. Koch, and W. L. Zhang, “Sharp Fano resonances in THz metamaterials,” Opt. Express 19, 6312–6319 (2011).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. G. Han, A. J. Taylor, and W. L. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express 16, 1786–1795 (2008).
[CrossRef]

Zhang, X.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[CrossRef]

Zhang, X. P.

X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
[CrossRef]

Zhao, P. X.

X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
[CrossRef]

Zheludev, N. I.

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

Zojer, E.

L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008).
[CrossRef]

ACS Nano (1)

H. Aouani, H. Sipova, M. Rahmani, M. Navarro-Cia, K. Hegnerova, J. Homola, M. H. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7, 669–675 (2013).
[CrossRef]

Adv. Funct. Mater. (2)

X. P. Zhang, X. W. Ma, F. Dou, P. X. Zhao, and H. M. Liu, “A biosensor based on metallic photonic crystals for the detection of specific bioreactions,” Adv. Funct. Mater. 21, 4219–4227 (2011).
[CrossRef]

L. Romaner, G. Heimel, C. Ambrosch-Draxl, and E. Zojer, “The dielectric constant of self-assembled monolayers,” Adv. Funct. Mater. 18, 3999–4006 (2008).
[CrossRef]

Adv. Mater. (1)

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. B. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on paper as a sensing platform,” Adv. Mater. 23, 3197–3201 (2011).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, “Soft lithography in biology and biochemistry,” Annu. Rev. Biomed. Eng. 3, 335–373 (2001).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Appl. Phys. Lett. (12)

Y. Sun, X. Xia, H. Feng, H. Yang, C. Gu, and L. Wang, “Modulated terahertz responses of split ring resonators by nanometer thick liquid layers,” Appl. Phys. Lett. 92, 221101 (2008).
[CrossRef]

X. J. Wu, X. C. Pan, B. G. Quan, X. L. Xu, C. Z. Gu, and L. Wang, “Self-referenced sensing based on terahertz metamaterial for aqueous solutions,” Appl. Phys. Lett. 102, 151109 (2013).
[CrossRef]

I. A. I. Al-Naib, C. Jansen, and M. Koch, “Thin-film sensing with planar asymmetric metamaterial resonators,” Appl. Phys. Lett. 93, 083507 (2008).
[CrossRef]

C. Debus and P. H. Bolivar, “Frequency selective surfaces for high sensitivity terahertz sensing,” Appl. Phys. Lett. 91, 184102 (2007).
[CrossRef]

S.-Y. Chiam, R. Singh, J. Q. Gu, J. G. Han, W. L. Zhang, and A. A. Bettiol, “Increased frequency shifts in high aspect ratio terahertz split ring resonators,” Appl. Phys. Lett. 94, 064102 (2009).
[CrossRef]

S.-Y. Chiam, R. Singh, W. L. Zhang, and A. A. Bettiol, “Controlling metamaterial resonances via dielectric and aspect ratio effects,” Appl. Phys. Lett. 97, 191906 (2010).
[CrossRef]

H.-J. Lee and J.-G. Yook, “Biosensing using split-ring resonators at microwave regime,” Appl. Phys. Lett. 92, 254103 (2008).
[CrossRef]

H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007).
[CrossRef]

T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, S. Y. Cho, N. M. Jokerst, and D. R. Smith, “Tuned permeability in terahertz split-ring resonators for devices and sensors,” Appl. Phys. Lett. 91, 062511 (2007).
[CrossRef]

B. G. Quan, X. L. Xu, H. F. Yang, X. X. Xia, Q. Wang, L. Wang, C. Z. Gu, C. Li, and F. Li, “Time-resolved broadband analysis of split ring resonators in terahertz region,” Appl. Phys. Lett. 89, 041101 (2006).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. L. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett. 99, 201107 (2011).
[CrossRef]

E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[CrossRef]

Appl. Spectrosc. (1)

Biosens. Bioelectron. (1)

X. J. Wu, B. G. Quan, X. C. Pan, X. L. Xu, X. C. Lu, C. Z. Gu, and L. Wang, “Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor,” Biosens. Bioelectron. 42, 626–631 (2013).
[CrossRef]

Chem. Phys. Lett. (1)

Z. Tian, J. Han, X. Lu, J. Gu, Q. Xing, and W. Zhang, “Surface plasmon enhanced terahertz spectroscopic distinguishing between isotopes,” Chem. Phys. Lett. 475, 132–134 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” J. Am. Chem. Soc. 123, 1471–1482 (2001).
[CrossRef]

J. Appl. Phys. (2)

X. Xia, Y. Sun, H. Yang, H. Feng, L. Wang, and C. Gu, “The influences of substrate and metal properties on the magnetic response of metamaterials at terahertz region,” J. Appl. Phys. 104, 033505 (2008).
[CrossRef]

H. J. Lee, K. H. Yoo, and J. G. Yook, “DNA sensing using split-ring resonator alone at microwave Regime,” J. Appl. Phys. 108, 014908 (2010).
[CrossRef]

J. Opt. A (1)

Z. Jakšić, O. Jakšić, Z. Djurić, and C. Kment, “A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance,” J. Opt. A 9, S377–S384 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

D. M. Alloway, M. Hofmann, D. L. Smith, N. E. Gruhn, A. L. Graham, R. Colorado, V. H. Vysocki, T. R. Lee, P. A. Lee, and N. R. Armstrong, “Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols,” J. Phys. Chem. B 107, 11690–11699 (2003).
[CrossRef]

J. Vac. Sci. Technol. A (1)

M. Knupfer and G. Paasch, “Origin of the interface dipole at interfaces between undoped organic semiconductors and metals,” J. Vac. Sci. Technol. A 23, 1072–1077 (2005).
[CrossRef]

Nano Lett. (1)

X. L. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang, and Q. H. Xiong, “Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing,” Nano Lett. 11, 3232–3238 (2011).
[CrossRef]

Nat. Mater. (1)

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, and G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
[CrossRef]

Nature (1)

H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, “Towards molecular electronics with large-area molecular junctions,” Nature 441, 69–72 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. B (1)

C.-X. Wu and M. Iwamoto, “Calculation of the dielectric constant of monolayer films with dielectric anisotropy,” Phys. Rev. B 55, 10922–10930 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

L. S. Jung and C. T. Campbell, “Sticking probabilities in adsorption from liquid solutions: alkylthiols on gold,” Phys. Rev. Lett. 84, 5164–5167 (2000).
[CrossRef]

Science (2)

N. I. Zheludev, “The road ahead for metamaterials,” Science 328, 582–583 (2010).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Sens. Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Photography of the U-shaped SRRs metamaterials with the parameters stated in the main text. Simulated near-field amplitude distribution around a SRR for Mode 1 (top right) and Mode 2 (bottom right). (b) Schematics of alkanethiol molecules with CH3(CH2)17SH can form a self-assembled monolayer when they interact with gold (Au).

Fig. 2.
Fig. 2.

(a) Calculated electromagnetic response (red squares) of SRRs with Mode 1 near 0.4 THz and Mode 2 near 1.2 THz. The electromagnetic response has been tuned when alkanethiol molecules (C18) bond to the SRRs (black line). The DT signal is shown in the bottom panel with the blue line (value offset by 0.06 for clarity). (b) Calculated near-field amplitude enhancement spectrum near the SRRs gap.

Fig. 3.
Fig. 3.

DT spectroscopy due to the central frequency change (black curve), damp change (red curve), and both (blue curve). The peak–valley value (ΔPV) near the resonant region is demonstrated. The inset is a Lorentz resonator at 1.236 THz.

Fig. 4.
Fig. 4.

Contour map of the sensor characteristic with the spontaneous change of both central frequency and damp. The dash line is a cross section when the damp constant is fixed and the contour line is demonstrated in the bottom panel with the linear dependence of ΔPV value with the change of central frequency.

Fig. 5.
Fig. 5.

Original metamaterial electromagnetic response (black line) with Mode 1 near 0.4 THz and Mode 2 near 1.2 THz. (a) The electromagnetic response has been tuned when alkanethiol molecules (C18) bond to the SRRs (red line). (b) The control experiment with ethanol only is also shown. The DT signal is shown in the bottom of the panel with a blue line.

Fig. 6.
Fig. 6.

(a) ΔPV change for Mode 1 when thiol molecules with different carbon atoms bond to metamaterials (carbon number 0 for control experiments with ethanol solution). (b) ΔPV change for Mode 2. The blue dash line is used to guide eyes.

Fig. 7.
Fig. 7.

(a) fc change for Mode 1 when thiol molecules with different carbon atoms bond to metamaterials (carbon number 0 for control experiments with ethanol solution). (b) fc change for Mode 2. The blue dash line is used to guide eyes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T=T02AπΓ4(ffc)2+Γ2,
dTT8(ffc)dfc+(4(ffc)2ΓΓ)dΓ4(ffc)2+Γ2.
ΔEvac(n)=enμ0ε0εeff(n),

Metrics