Abstract

By introducing the rate equations and light intensity propagating equations into the fast Fourier transform-based calculation, the optical gain served as the connection between the light field and light intensity, its influence over mode pattern was studied. Thermal lens effect was also investigated by means of finite element analysis. The analysis was applied to a slab laser with a hybrid cavity. A similar experimental study was also carried out in the laboratory. TEM00 mode with sidelobes along the unstable direction was observed both in the calculation and experiment. As predicted in the analysis, the homogeneity of the pump light improved the beam quality. Numerical and experimental results of pump threshold and slope efficiency were also presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Fox and T. Li, “Resonant modes in Maser interferometer,” Bessel Syst. Tech. J. 40, 453–488 (1961).
  2. D. B. Rensch and A. N. Chester, “Iterative diffraction calculations of transverse mode distributions in confocal unstable laser resonators,” Appl. Opt. 12, 997–1010 (1973).
    [CrossRef]
  3. D. B. Rensch, “Three-dimensional unstable resonator calculations with laser medium,” Appl. Opt. 13, 2546–2561 (1974).
    [CrossRef]
  4. V. E. Sherstobitov and G. N. Vinokurov, “Property of unstable resonator with large equivalent Fresnel numbers,” Sov. J. Quantum Electron. 2, 224–229 (1972).
    [CrossRef]
  5. P. Horwitz, “Asymptotic theory of unstable resonator modes,” J. Opt. Soc. Am. 63, 1528–1543 (1973).
    [CrossRef]
  6. W. H. Carter, “Stable and unstable cylindrical-laser-resonator theory in an angular spectrum representation,” J. Opt. Soc. Am. 64, 1100–1106 (1974).
    [CrossRef]
  7. G. T. Moore and R. J. McCarthy, “Theory of modes in a loaded strip confocal unstable resonator,” J. Opt. Soc. Am. 67, 228–241 (1977).
    [CrossRef]
  8. W. H. Southwell, “Virtual-source theory of unstable resonator modes,” Opt. Lett. 6, 487–489 (1981).
    [CrossRef]
  9. A. E. Siegman and E. A. Sziklas, “Mode calculations in unstable resonators with flowing saturable gain. 1: Hermite–Gaussian expansion,” Appl. Opt. 13, 2775–2791 (1974).
    [CrossRef]
  10. E. A. Sziklas and A. E. Siegman, “Mode calculations in unstable resonators with flowing saturable gain. 2: fast Fourier transform method,” Appl. Opt. 14, 1874–1889 (1975).
    [CrossRef]
  11. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  12. K. Du and D. Li, “Electro-optically Q-switched NdYVO 4 slab laser with a high repetition rate and a short pulse width,” Opt. Lett. 28, 87–89 (2003).
    [CrossRef]
  13. H. Zhang and K. Du, “Diode-end-pumped electro-optically Q-switched Nd:YLF slab laser,” Appl. Opt. 43, 2940–2943 (2004).
    [CrossRef]
  14. K. Du and N. Wu, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23, 370–372 (1998).
    [CrossRef]
  15. J. Eggleston and T. Kane, “The slab geometry laser—Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
    [CrossRef]
  16. T. Kane and J. Eggleston, “The slab geometry laser-II: thermal effects in a finite slab,” IEEE J. Quantum Electron. 211195–1210 (1985).
    [CrossRef]
  17. Z. Ma and D. Li, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
    [CrossRef]

2007 (1)

Z. Ma and D. Li, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

2004 (1)

2003 (1)

1998 (1)

1985 (1)

T. Kane and J. Eggleston, “The slab geometry laser-II: thermal effects in a finite slab,” IEEE J. Quantum Electron. 211195–1210 (1985).
[CrossRef]

1984 (1)

J. Eggleston and T. Kane, “The slab geometry laser—Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

1981 (1)

1977 (1)

1975 (1)

1974 (3)

1973 (2)

1972 (1)

V. E. Sherstobitov and G. N. Vinokurov, “Property of unstable resonator with large equivalent Fresnel numbers,” Sov. J. Quantum Electron. 2, 224–229 (1972).
[CrossRef]

1961 (1)

A. G. Fox and T. Li, “Resonant modes in Maser interferometer,” Bessel Syst. Tech. J. 40, 453–488 (1961).

Carter, W. H.

Chester, A. N.

Du, K.

Eggleston, J.

T. Kane and J. Eggleston, “The slab geometry laser-II: thermal effects in a finite slab,” IEEE J. Quantum Electron. 211195–1210 (1985).
[CrossRef]

J. Eggleston and T. Kane, “The slab geometry laser—Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Fox, A. G.

A. G. Fox and T. Li, “Resonant modes in Maser interferometer,” Bessel Syst. Tech. J. 40, 453–488 (1961).

Horwitz, P.

Kane, T.

T. Kane and J. Eggleston, “The slab geometry laser-II: thermal effects in a finite slab,” IEEE J. Quantum Electron. 211195–1210 (1985).
[CrossRef]

J. Eggleston and T. Kane, “The slab geometry laser—Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Li, D.

Li, T.

A. G. Fox and T. Li, “Resonant modes in Maser interferometer,” Bessel Syst. Tech. J. 40, 453–488 (1961).

Ma, Z.

Z. Ma and D. Li, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

McCarthy, R. J.

Moore, G. T.

Rensch, D. B.

Sherstobitov, V. E.

V. E. Sherstobitov and G. N. Vinokurov, “Property of unstable resonator with large equivalent Fresnel numbers,” Sov. J. Quantum Electron. 2, 224–229 (1972).
[CrossRef]

Siegman, A. E.

Southwell, W. H.

Sziklas, E. A.

Vinokurov, G. N.

V. E. Sherstobitov and G. N. Vinokurov, “Property of unstable resonator with large equivalent Fresnel numbers,” Sov. J. Quantum Electron. 2, 224–229 (1972).
[CrossRef]

Wu, N.

Zhang, H.

Appl. Opt. (5)

Bessel Syst. Tech. J. (1)

A. G. Fox and T. Li, “Resonant modes in Maser interferometer,” Bessel Syst. Tech. J. 40, 453–488 (1961).

IEEE J. Quantum Electron. (2)

J. Eggleston and T. Kane, “The slab geometry laser—Part I: theory,” IEEE J. Quantum Electron. 20, 289–301 (1984).
[CrossRef]

T. Kane and J. Eggleston, “The slab geometry laser-II: thermal effects in a finite slab,” IEEE J. Quantum Electron. 211195–1210 (1985).
[CrossRef]

J. Opt. Soc. Am. (3)

Opt. Commun. (1)

Z. Ma and D. Li, “Thermal effects of the diode end-pumped Nd:YVO4 slab,” Opt. Commun. 275, 179–185 (2007).
[CrossRef]

Opt. Lett. (3)

Sov. J. Quantum Electron. (1)

V. E. Sherstobitov and G. N. Vinokurov, “Property of unstable resonator with large equivalent Fresnel numbers,” Sov. J. Quantum Electron. 2, 224–229 (1972).
[CrossRef]

Other (1)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Illustration of the iterative process.

Fig. 2.
Fig. 2.

Typical energy level diagram of the four-level system.

Fig. 3.
Fig. 3.

Typical configuration of the hybrid slab laser.

Fig. 4.
Fig. 4.

OPD under 50 W pump power.

Fig. 5.
Fig. 5.

Mode pattern of the hybrid slab laser from calculation. (a) Near field and (b) far field.

Fig. 6.
Fig. 6.

(a) Far-field mode pattern from experiment. (b) 2D profiles from numerical calculation.

Fig. 7.
Fig. 7.

Pump homogeneity under three different pump conditions.

Fig. 8.
Fig. 8.

Beam quality change under different pump homogeneity: case 1 (D=20mm), case 2 (D=7mm), and case 3 (D=7mm with slit).

Fig. 9.
Fig. 9.

Laser output performance under different pump powers (experimental and numerical).

Tables (1)

Tables Icon

Table 1. Parameters of the Hybrid Cavity Slab Laser

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ξA(νx,νy)=UA(x,y,zA)exp[j(2πνxx+2πνyy)]dνxdνy,
ξB(νx,νy)=ξA(νx,νy)exp[jkL1λ2νx2λ2νy2],
UB(x,y,zB)=ξB(νx,νy)exp[j(2πνxx+2πνyy)]dνxdνy.
IB(x,y,zB)=|UB(x,y,zB)|2|UB(x,y,zB)|2dxdyIA(x,y,zA)dxdy.
dn2dt=Wpn0n2σ(I++I)hνlasern2τ,
n2+n0=ntot,
dI±dz=n2σI±εlossI±,
g±(xi,yj,zk)=ln[I±(xi,yj,zk±1)/I±(xi,yj,zk)]Δz.
U±(xi,yj,zk±1)=U±(xi,yj,zk)exp[Δz·g(xi,yj,zk)].
I±(xi,yj,zk±1)=|U±(xi,yj,zk±1)|2|U±(x,y,zk±1)|2dxdyI±(x,y,zk)dxdy,
U±(xi,yj,zk±1)=U±(xi,yj,zk)I±(xi,yj,zk±1)/I±(xi,yj,zk).

Metrics