Abstract

This article demonstrates a bistable optical valve in a photonic liquid crystal fiber using the thermal hysteresis effect of the phase transition between the cholesteric phase and the blue phase (BP). The attenuation is due to various scattering losses in different phases. Both cholesteric and BPs can exist stably at room temperature (RT) and can also be switched to each other using temperature-control processes. The transmission spectrum and the intensity of the guided light can be controlled with various extents of scattering loss. For optical communications, this device can be manipulated over a loss difference of 10 dB at RT and insensitive to the polarization of light.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [CrossRef]
  2. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
    [CrossRef]
  3. T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
    [CrossRef]
  4. T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
    [CrossRef]
  5. J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
    [CrossRef]
  6. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Liquid crystal photonic bandgap fiber: different bandgap transmissions at different temperature ranges,” Appl. Opt. 47, 5321–5324 (2008).
    [CrossRef]
  7. D. Noordegraaf, L. Scolari, J. Laegsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008).
    [CrossRef]
  8. W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17, 19356–19364 (2009).
    [CrossRef]
  9. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
    [CrossRef]
  10. M. M. Tefelska, T. R. Wolínski, R. Dabrowski, and J. Wojcik, “Chiral nematic liquid crystals as an alternative filling in photonic crystal fibers,” Photon. Lett. Pol. 2, 28–30 (2010).
  11. L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96, 241104 (2010).
    [CrossRef]
  12. L. Scolari, L. Wei, S. Gauza, S. T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev. 18, 114–116 (2011).
    [CrossRef]
  13. F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
    [CrossRef]
  14. T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
    [CrossRef]
  15. D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
    [CrossRef]
  16. T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707–1709 (2007).
    [CrossRef]
  17. J. Du, Y. Liu, Z. Wang, B. Zou, B. Liu, and X. Dong, “Electrically tunable Sagnac filter based on a photonic bandgap fiber with liquid crystal infused,” Opt. Lett. 33, 2215–2217 (2008).
    [CrossRef]
  18. C.-H. Lee, C.-H. Chen, C.-L. Kao, C.-P. Yu, S.-M. Yeh, W.-H. Cheng, and T.-H. Lin, “Photo and electrical tunable effects in photonic liquid crystal fiber,” Opt. Express 18, 2814–2821 (2010).
    [CrossRef]
  19. C.-H. Chen, C.-H. Lee, and T.-H. Lin, “Loss-reduced photonic liquid-crystal fiber by using photoalignment method,” Appl. Opt. 49, 4846–4850 (2010).
    [CrossRef]
  20. J.-H. Liou, T.-H. Chang, T. Lin, and C.-P. Yu, “Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers,” Opt. Express 19, 6756–6761 (2011).
    [CrossRef]
  21. P. Mach, C. Kerbage, S. Ramanathan, R. S. Windeler, B. J. Eggleton, and J. A. Rogers, “Influence of scattering on transmission through long-period fiber gratings and tunable microstructure fibers,” Appl. Opt. 41, 7018–7024 (2002).
    [CrossRef]
  22. S. Baek, Y. Jeong, H.-R. Kim, S.-D. Lee, and B. Lee, “Electrically controllable in-line-type polarizer using polymer-dispersed liquid-crystal spliced optical fibers,” Appl. Opt. 42, 5033–5039 (2003).
    [CrossRef]
  23. M. Balakrishnan, R. Spittel, M. Becker, M. Rothhardt, A. Schwuchow, J. Kobelke, K. Schuster, and H. Bartelt, “Polymer-filled silica fibers as a step towards electro-optically tunable fiber devices,” J. Lightwave Technol. 30, 1931–1936 (2012).
    [CrossRef]
  24. C. Markos, K. Vlachos, and G. Kakarantzas, “Guiding and thermal properties of a hybrid polymer-infused photonic crystal fiber,” Opt. Mater. Express 2, 929–941 (2012).
    [CrossRef]
  25. M. Hoffmann, P. Kopka, and E. Voges, “Bistable micromechanical fiber-optic switches on silicon with thermal actuators,” Sens. Actuators 78, 28–35 (1999).
    [CrossRef]
  26. M. Freudenreich, U. Mescheder, and G. Somogyi, “Simulation and realization of a novel micromechanical bi-stable switch,” Sens. Actuators A 114, 451–459 (2004).
    [CrossRef]
  27. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
    [CrossRef]
  28. H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436, 997–1000 (2005).
    [CrossRef]
  29. Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
    [CrossRef]
  30. Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
    [CrossRef]
  31. C.-T. Wang, H.-C. Jau, and T.-H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater. 34, 248–250 (2011).
    [CrossRef]
  32. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
    [CrossRef]
  33. S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4662 (1998).
  34. C.-P. Yu and H.-C. Chang, “Compact finite-difference frequency-domain method for the analysis of two dimensional photonic crystals,” Opt. Express 12, 1397–1408 (2004).
    [CrossRef]
  35. C.-W. Chen, H.-C. Jau, C.-H. Lee, C.-C. Li, C.-T. Hou, C.-W. Wu, T.-H. Lin, and I. C. Khoo, “Temperature dependence of refractive index in blue phase liquid crystals,” Opt. Mater. Express 3, 527–532 (2013).
    [CrossRef]

2013 (1)

2012 (2)

2011 (3)

J.-H. Liou, T.-H. Chang, T. Lin, and C.-P. Yu, “Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers,” Opt. Express 19, 6756–6761 (2011).
[CrossRef]

C.-T. Wang, H.-C. Jau, and T.-H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater. 34, 248–250 (2011).
[CrossRef]

L. Scolari, L. Wei, S. Gauza, S. T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev. 18, 114–116 (2011).
[CrossRef]

2010 (4)

M. M. Tefelska, T. R. Wolínski, R. Dabrowski, and J. Wojcik, “Chiral nematic liquid crystals as an alternative filling in photonic crystal fibers,” Photon. Lett. Pol. 2, 28–30 (2010).

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96, 241104 (2010).
[CrossRef]

C.-H. Lee, C.-H. Chen, C.-L. Kao, C.-P. Yu, S.-M. Yeh, W.-H. Cheng, and T.-H. Lin, “Photo and electrical tunable effects in photonic liquid crystal fiber,” Opt. Express 18, 2814–2821 (2010).
[CrossRef]

C.-H. Chen, C.-H. Lee, and T.-H. Lin, “Loss-reduced photonic liquid-crystal fiber by using photoalignment method,” Appl. Opt. 49, 4846–4850 (2010).
[CrossRef]

2009 (3)

2008 (4)

2007 (3)

2006 (1)

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

2005 (2)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436, 997–1000 (2005).
[CrossRef]

2004 (4)

C.-P. Yu and H.-C. Chang, “Compact finite-difference frequency-domain method for the analysis of two dimensional photonic crystals,” Opt. Express 12, 1397–1408 (2004).
[CrossRef]

M. Freudenreich, U. Mescheder, and G. Somogyi, “Simulation and realization of a novel micromechanical bi-stable switch,” Sens. Actuators A 114, 451–459 (2004).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

2003 (3)

2002 (2)

1999 (1)

M. Hoffmann, P. Kopka, and E. Voges, “Bistable micromechanical fiber-optic switches on silicon with thermal actuators,” Sens. Actuators 78, 28–35 (1999).
[CrossRef]

1998 (1)

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4662 (1998).

1996 (1)

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Alkeskjold, T. T.

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96, 241104 (2010).
[CrossRef]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
[CrossRef]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17, 19356–19364 (2009).
[CrossRef]

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, and T. T. Alkeskjold, “Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers,” Opt. Express 15, 7901–7912 (2007).
[CrossRef]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707–1709 (2007).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[CrossRef]

Anawati, A.

Baek, S.

Balakrishnan, M.

Bang, O.

Bartelt, H.

Bassi, P.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

Becker, M.

Bjarklev, A.

L. Scolari, L. Wei, S. Gauza, S. T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev. 18, 114–116 (2011).
[CrossRef]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96, 241104 (2010).
[CrossRef]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
[CrossRef]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17, 19356–19364 (2009).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

T. T. Alkeskjold and A. Bjarklev, “Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter,” Opt. Lett. 32, 1707–1709 (2007).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[CrossRef]

T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, “Optical devices based on liquid crystal photonic bandgap fibres,” Opt. Express 11, 2589–2596 (2003).
[CrossRef]

Booth, C. J.

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Borelli, E.

Broeng, J.

Brugioni, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Chang, H.-C.

Chang, T.-H.

Chen, C.-H.

Chen, C.-W.

Cheng, W.-H.

Coles, H. J.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436, 997–1000 (2005).
[CrossRef]

Collings, P. J.

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Dabrowski, R.

M. M. Tefelska, T. R. Wolínski, R. Dabrowski, and J. Wojcik, “Chiral nematic liquid crystals as an alternative filling in photonic crystal fibers,” Photon. Lett. Pol. 2, 28–30 (2010).

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Domanski, A. W.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Dong, X.

Du, F.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Du, J.

Eggleton, B. J.

Ertman, S.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Eskildsen, L.

Faetti, S.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Freudenreich, M.

M. Freudenreich, U. Mescheder, and G. Somogyi, “Simulation and realization of a novel micromechanical bi-stable switch,” Sens. Actuators A 114, 451–459 (2004).
[CrossRef]

Garland, C. W.

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Gauza, S.

L. Scolari, L. Wei, S. Gauza, S. T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev. 18, 114–116 (2011).
[CrossRef]

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

Ge, Z.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Goodby, J. W.

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Hermann, D. S.

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Hoffmann, M.

M. Hoffmann, P. Kopka, and E. Voges, “Bistable micromechanical fiber-optic switches on silicon with thermal actuators,” Sens. Actuators 78, 28–35 (1999).
[CrossRef]

Hou, C.-T.

Hu, J. J.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

Jau, H.-C.

Jeong, Y.

Jiao, M.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Kakarantzas, G.

Kao, C.-L.

Kerbage, C.

Khoo, I. C.

Kikuchi, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Kim, H.-R.

Kobelke, J.

Kopka, P.

M. Hoffmann, P. Kopka, and E. Voges, “Bistable micromechanical fiber-optic switches on silicon with thermal actuators,” Sens. Actuators 78, 28–35 (1999).
[CrossRef]

Kutnjak, Z.

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Laegsgaard, J.

Lægsgaard, J.

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

T. T. Alkeskjold, J. Lægsgaard, A. Bjarklev, D. S. Hermann, A. Anawati, J. Broeng, J. Li, and S. T. Wu, “All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers,” Opt. Express 12, 5857–5871 (2004).
[CrossRef]

Larsen, T. T.

Lee, B.

Lee, C.-H.

Lee, S.-D.

Lesiak, P.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Li, C.-C.

Li, J.

Lin, T.

Lin, T.-H.

Liou, J.-H.

Liu, B.

Liu, Y.

Lu, C.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

Lu, Y.-Q.

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

Mach, P.

Markos, C.

Mescheder, U.

M. Freudenreich, U. Mescheder, and G. Somogyi, “Simulation and realization of a novel micromechanical bi-stable switch,” Sens. Actuators A 114, 451–459 (2004).
[CrossRef]

Meucci, R.

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

Noordegraaf, D.

Nowinowski-Kruszelnicki, E.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Pivnenko, M. N.

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436, 997–1000 (2005).
[CrossRef]

Ramanathan, S.

Ren, G.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

Rindorf, L.

Rogers, J. A.

Rothhardt, M.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Schatz, C. G.

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Schuster, K.

Schwuchow, A.

Scolari, L.

Shum, P.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

Somogyi, G.

M. Freudenreich, U. Mescheder, and G. Somogyi, “Simulation and realization of a novel micromechanical bi-stable switch,” Sens. Actuators A 114, 451–459 (2004).
[CrossRef]

Spittel, R.

Szaniawska, K.

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Tartarini, G.

D. Noordegraaf, L. Scolari, J. Laegsgaard, T. T. Alkeskjold, G. Tartarini, E. Borelli, P. Bassi, J. Li, and S. T. Wu, “Avoided-crossing-based liquid-crystal photonic-bandgap notch filter,” Opt. Lett. 33, 986–988 (2008).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

Tefelska, M. M.

M. M. Tefelska, T. R. Wolínski, R. Dabrowski, and J. Wojcik, “Chiral nematic liquid crystals as an alternative filling in photonic crystal fibers,” Photon. Lett. Pol. 2, 28–30 (2010).

Vlachos, K.

Voges, E.

M. Hoffmann, P. Kopka, and E. Voges, “Bistable micromechanical fiber-optic switches on silicon with thermal actuators,” Sens. Actuators 78, 28–35 (1999).
[CrossRef]

Wang, C.-T.

C.-T. Wang, H.-C. Jau, and T.-H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater. 34, 248–250 (2011).
[CrossRef]

Wang, G.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

Wang, Z.

Wei, L.

L. Scolari, L. Wei, S. Gauza, S. T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev. 18, 114–116 (2011).
[CrossRef]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96, 241104 (2010).
[CrossRef]

W. Yuan, L. Wei, T. T. Alkeskjold, A. Bjarklev, and O. Bang, “Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers,” Opt. Express 17, 19356–19364 (2009).
[CrossRef]

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

Weirich, J.

L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. T. Alkeskjold, and A. Bjarklev, “Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers,” Appl. Opt. 48, 497–503 (2009).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

Windeler, R. S.

Wojcik, J.

M. M. Tefelska, T. R. Wolínski, R. Dabrowski, and J. Wojcik, “Chiral nematic liquid crystals as an alternative filling in photonic crystal fibers,” Photon. Lett. Pol. 2, 28–30 (2010).

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Wolínski, T. R.

M. M. Tefelska, T. R. Wolínski, R. Dabrowski, and J. Wojcik, “Chiral nematic liquid crystals as an alternative filling in photonic crystal fibers,” Photon. Lett. Pol. 2, 28–30 (2010).

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Wu, C.-W.

Wu, S. T.

Wu, S.-T.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4662 (1998).

Xianyu, H.

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Yeh, S.-M.

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Yu, C.-P.

Yu, X.

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

Yuan, W.

Zou, B.

Appl. Opt. (5)

Appl. Phys. Lett. (3)

Z. Ge, S. Gauza, M. Jiao, H. Xianyu, and S.-T. Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett. 94, 101104 (2009).
[CrossRef]

L. Wei, T. T. Alkeskjold, and A. Bjarklev, “Tunable and rotatable polarization controller using photonic crystal fiber filled with liquid crystal,” Appl. Phys. Lett. 96, 241104 (2010).
[CrossRef]

F. Du, Y.-Q. Lu, and S.-T. Wu, “Electrically tunable liquid-crystal photonic crystal fiber,” Appl. Phys. Lett. 85, 2181–2183 (2004).
[CrossRef]

J. Appl. Phys. (2)

J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005).
[CrossRef]

S.-T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4662 (1998).

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

T. R. Wolínski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, and J. Wojcik, “Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres,” Meas. Sci. Technol. 17, 985–991 (2006).
[CrossRef]

Nat. Mater. (1)

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[CrossRef]

Nature (1)

H. J. Coles and M. N. Pivnenko, “Liquid crystal ‘blue phases’ with a wide temperature range,” Nature 436, 997–1000 (2005).
[CrossRef]

Opt. Commun. (1)

J. J. Hu, P. Shum, G. Ren, X. Yu, G. Wang, C. Lu, S. Ertman, and T. R. Wolínski, “Investigation of thermal influence on the bandgap properties of liquid-crystal photonic crystal fibers,” Opt. Commun. 281, 4339–4342 (2008).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Opt. Mater. (1)

C.-T. Wang, H.-C. Jau, and T.-H. Lin, “Bistable cholesteric-blue phase liquid crystal using thermal hysteresis,” Opt. Mater. 34, 248–250 (2011).
[CrossRef]

Opt. Mater. Express (2)

Opt. Quantum Electron. (1)

T. T. Alkeskjold, L. Scolari, D. Noordegraaf, J. Lægsgaard, J. Weirich, L. Wei, G. Tartarini, P. Bassi, S. Gauza, S.-T. Wu, and A. Bjarklev, “Integrating liquid crystal based optical devices in photonic crystal fibers,” Opt. Quantum Electron. 39, 1009–1019 (2007).
[CrossRef]

Opt. Rev. (1)

L. Scolari, L. Wei, S. Gauza, S. T. Wu, and A. Bjarklev, “Low loss liquid crystal photonic bandgap fiber in the near-infrared region,” Opt. Rev. 18, 114–116 (2011).
[CrossRef]

Photon. Lett. Pol. (1)

M. M. Tefelska, T. R. Wolínski, R. Dabrowski, and J. Wojcik, “Chiral nematic liquid crystals as an alternative filling in photonic crystal fibers,” Photon. Lett. Pol. 2, 28–30 (2010).

Phys. Rev. E (1)

Z. Kutnjak, C. W. Garland, C. G. Schatz, P. J. Collings, C. J. Booth, and J. W. Goodby, “Critical point for the blue-phase-III–isotropic phase transition in chiral liquid crystals,” Phys. Rev. E 53, 4955–4963 (1996).
[CrossRef]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[CrossRef]

Sens. Actuators (1)

M. Hoffmann, P. Kopka, and E. Voges, “Bistable micromechanical fiber-optic switches on silicon with thermal actuators,” Sens. Actuators 78, 28–35 (1999).
[CrossRef]

Sens. Actuators A (1)

M. Freudenreich, U. Mescheder, and G. Somogyi, “Simulation and realization of a novel micromechanical bi-stable switch,” Sens. Actuators A 114, 451–459 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Phase sequences of LC during cooling and heating. Reflection mode POM images of (b) BP and (c) CLC under crossed polarizers at 25.7°C, respectively. P, polarizer; A, analyzer.

Fig. 2.
Fig. 2.

Experimental setup for measuring the transmission spectrum, transmission intensity, and PDL of PLCF.

Fig. 3.
Fig. 3.

Transmission spectrum of BPLC filled PCF during (a) cooling, (b) heating, and (c) its corresponding simulated wavelength at shorter band edge.

Fig. 4.
Fig. 4.

Transmission power of BPLC filled PCF at 1550 nm during cooling (blue circle) and heating (red triangle).

Metrics