Abstract

Regularization methods were combined with line-of-sight tunable diode laser absorption spectroscopy (TDLAS) to measure nonuniform temperature and concentration distributions along the laser path when a priori information of the temperature distribution tendency is available. Relying on measurements of 12 absorption transitions of water vapor from 1300 to 1350 nm, the nonuniform temperature and concentration distributions were retrieved by making the use of nonlinear and linear regularization methods, respectively. To examine the effectiveness of regularization methods, a simulated annealing algorithm for nonlinear regularization was implemented to reconstruct the temperature distribution, while three linear regularization methods, namely truncated singular value decomposition, Tikhonov regularization, and a revised Tikhonov regularization method, were implemented to retrieve the concentration distribution. The results show that regularization methods not only can be used to retrieve temperature and concentration distributions closer to the original but also are less sensitive to measurement noise. When no sufficient optical access is available for TDLAS tomography, the methods proposed in the paper can be used to obtain more details of the combustion field with higher accuracy and robustness, which are expected to play a more important role in combustion diagnosis.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, and X. Chang, “Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors,” Appl. Opt. 50, 6697–6707 (2011).
    [CrossRef]
  2. A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
    [CrossRef]
  3. G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
    [CrossRef]
  4. A. Farooq and J. B. Jeffries, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 75604 (2008).
    [CrossRef]
  5. H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption,” AIAA J. 45, 390–398 (2007).
    [CrossRef]
  6. X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
    [CrossRef]
  7. A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139–144 (2006).
    [CrossRef]
  8. T. F. Holger Teichert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
    [CrossRef]
  9. M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
    [CrossRef]
  10. P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).
  11. X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
    [CrossRef]
  12. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
    [CrossRef]
  13. P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
    [CrossRef]
  14. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
    [CrossRef]
  15. V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
    [CrossRef]
  16. J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
    [CrossRef]
  17. M. A. R. Lewander, Z. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the humanparanasal sinuses,” Opt. Express 17, 10849–10863 (2009).
    [CrossRef]
  18. L. Persson, M. A. R. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy,” Appl. Opt. 47, 2028–2034 (2008).
    [CrossRef]
  19. S. Li, A. Farooq, and R. K. Hanson, “H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 μm,” Meas. Sci. Technol. 22, 125301 (2011).
    [CrossRef]
  20. X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
    [CrossRef]
  21. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
    [CrossRef]
  22. T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
    [CrossRef]
  23. F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153, 384–393 (2008).
    [CrossRef]
  24. X. Ouyang and P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989).
    [CrossRef]
  25. L. Ma, X. Li, S. T. Sanders, A. W. Caswell, S. Roy, D. H. Plemmons, and J. R. Gord, “50 kHz-rate 2D imaging of temperature and H2O concentration at the exhaust plane of a J85 engine using hyperspectral tomography,” Opt. Express 21, 1152–1162 (2013).
    [CrossRef]
  26. V. Kasyutich and P. Martin, “Towards a two-dimensional concentration and temperature laser absorption tomography sensor system,” Appl. Phys. B 102, 149–162 (2011).
    [CrossRef]
  27. F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
    [CrossRef]
  28. L. Ma and W. Cai, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).
    [CrossRef]
  29. N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
    [CrossRef]
  30. E. J. Beiting, “Fast optical absorption tomography,” Opt. Lett. 16, 1280–1282 (1991).
    [CrossRef]
  31. S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
    [CrossRef]
  32. X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
    [CrossRef]
  33. T. I. Palaghita and J. M. Seitzman, “Absorption-based temperature-distribution-sensing for combustor diagnostics and control,” in Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper AIAA-2006-0430.
  34. X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005).
    [CrossRef]
  35. M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
    [CrossRef]
  36. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
    [CrossRef]
  37. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University, 1992).
  38. E. L. Piccolomini and F. Zama, “The cojugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87–99 (1999).
    [CrossRef]
  39. A. Corana, M. Marchesi, C. Matrini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,” ACM Trans. Math. Softw. 13, 262–280 (1987).
    [CrossRef]
  40. W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250–255 (2008).
    [CrossRef]
  41. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston & Sons, 1977).
  42. P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).
    [CrossRef]
  43. M. Fuhry and L. Reichel, “A new Tikhonov regularization method,” Numer. Algor. 59, 433–445 (2012).
    [CrossRef]
  44. X. Liu, “Line-of-sight absorption of H2O vapor: gas temperature sensing in uniform and nonuniform flows,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, CA, 2006).
  45. L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186–4192 (2008).
    [CrossRef]
  46. L. Xu, L. Xin, and Z. Cao, “l1-norm-based reconstruction algorithm for particle sizing,” Instrum. Meas. IEEE Trans. 61, 1395–1404 (2012).
  47. X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).
    [CrossRef]

2013

2012

M. Fuhry and L. Reichel, “A new Tikhonov regularization method,” Numer. Algor. 59, 433–445 (2012).
[CrossRef]

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

L. Xu, L. Xin, and Z. Cao, “l1-norm-based reconstruction algorithm for particle sizing,” Instrum. Meas. IEEE Trans. 61, 1395–1404 (2012).

2011

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).
[CrossRef]

F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, and X. Chang, “Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors,” Appl. Opt. 50, 6697–6707 (2011).
[CrossRef]

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

V. Kasyutich and P. Martin, “Towards a two-dimensional concentration and temperature laser absorption tomography sensor system,” Appl. Phys. B 102, 149–162 (2011).
[CrossRef]

S. Li, A. Farooq, and R. K. Hanson, “H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 μm,” Meas. Sci. Technol. 22, 125301 (2011).
[CrossRef]

2010

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
[CrossRef]

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

2009

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

M. A. R. Lewander, Z. Guan, K. Svanberg, S. Svanberg, and T. Svensson, “Clinical system for non-invasive in situ monitoring of gases in the humanparanasal sinuses,” Opt. Express 17, 10849–10863 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

L. Ma and W. Cai, “Tomographic imaging of temperature and chemical species based on hyperspectral absorption spectroscopy,” Opt. Express 17, 8602–8613 (2009).
[CrossRef]

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

2008

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186–4192 (2008).
[CrossRef]

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250–255 (2008).
[CrossRef]

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153, 384–393 (2008).
[CrossRef]

A. Farooq and J. B. Jeffries, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 75604 (2008).
[CrossRef]

L. Persson, M. A. R. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy,” Appl. Opt. 47, 2028–2034 (2008).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

2007

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption,” AIAA J. 45, 390–398 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

2006

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
[CrossRef]

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139–144 (2006).
[CrossRef]

2005

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

2003

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

T. F. Holger Teichert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef]

2002

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
[CrossRef]

2001

2000

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

1999

E. L. Piccolomini and F. Zama, “The cojugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87–99 (1999).
[CrossRef]

1998

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

1993

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).
[CrossRef]

1991

1989

1987

A. Corana, M. Marchesi, C. Matrini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,” ACM Trans. Math. Softw. 13, 262–280 (1987).
[CrossRef]

Akihama, K.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Allen, M. G.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

An, X.

Andersson, M.

Arsenin, V. Y.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston & Sons, 1977).

Baer, D. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Barbe, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Baumann, W. T.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139–144 (2006).
[CrossRef]

Beiting, E. J.

Bernard, F.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Bernath, P. F.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Birke, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Boudon, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Brown, L. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Brübach, J.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Cai, W.

Campargue, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Cao, Z.

L. Xu, L. Xin, and Z. Cao, “l1-norm-based reconstruction algorithm for particle sizing,” Instrum. Meas. IEEE Trans. 61, 1395–1404 (2012).

Caswell, A. W.

Catoire, V.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Cen, K. F.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

Champion, J.-P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Chance, K.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Chang, X.

Chao, X.

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Chen, L.

Chi, Y.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

Chris Benner, D.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Cignoli, F.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153, 384–393 (2008).
[CrossRef]

Colbourne, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Connolly, J. C.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Corana, A.

A. Corana, M. Marchesi, C. Matrini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,” ACM Trans. Math. Softw. 13, 262–280 (1987).
[CrossRef]

Coudert, L. H.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Crossley, S. D.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Daële, V.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Dana, V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Davidson, J. L.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

De Iuliis, S.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153, 384–393 (2008).
[CrossRef]

Devi, V. M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Dreier, T.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Estes, M.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Ewing, D. J.

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250–255 (2008).
[CrossRef]

Eyglunent, G.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Fally, S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Farooq, A.

S. Li, A. Farooq, and R. K. Hanson, “H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 μm,” Meas. Sci. Technol. 22, 125301 (2011).
[CrossRef]

A. Farooq and J. B. Jeffries, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 75604 (2008).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University, 1992).

Flaud, J.-M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Frish, M. B.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
[CrossRef]

Fuhry, M.

M. Fuhry and L. Reichel, “A new Tikhonov regularization method,” Numer. Algor. 59, 433–445 (2012).
[CrossRef]

Fujikawa, T.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Fuyuto, T.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Gamache, R. R.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Garbuzov, D. Z.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Garcia-Castillo, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Garcia-Stewart, C.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Garcia-Stewart, C. A.

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

Goldman, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Gord, J. R.

Gordon, I. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Green, B. D.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
[CrossRef]

Gu, H.

Guan, Z.

Hansen, P. C.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).
[CrossRef]

Hanson, R. K.

S. Li, A. Farooq, and R. K. Hanson, “H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 μm,” Meas. Sci. Technol. 22, 125301 (2011).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption,” AIAA J. 45, 390–398 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Hendricks, A. G.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139–144 (2006).
[CrossRef]

Hinckley, K. M.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
[CrossRef]

Hofvander, H.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Holger Teichert, T. F.

Howell, J.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Huang, Q. X.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

Huelson, E.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Jacquemart, D.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Jeffries, J. B.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

A. Farooq and J. B. Jeffries, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 75604 (2008).
[CrossRef]

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption,” AIAA J. 45, 390–398 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Jobson, A.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Kasyutich, V.

V. Kasyutich and P. Martin, “Towards a two-dimensional concentration and temperature laser absorption tomography sensor system,” Appl. Phys. B 102, 149–162 (2011).
[CrossRef]

Kleiner, I.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Kraetschmer, T.

Kronemayer, H.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Lacome, N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Laderer, M. C.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
[CrossRef]

Lafferty, W. J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Lewander, M. A. R.

Lewerich, B.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Li, F.

Li, H.

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption,” AIAA J. 45, 390–398 (2007).
[CrossRef]

Li, N.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

Li, S.

S. Li, A. Farooq, and R. K. Hanson, “H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 μm,” Meas. Sci. Technol. 22, 125301 (2011).
[CrossRef]

Li, X.

Li, Z.

Litt, T.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Litt, T. J.

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

Liu, X.

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

X. Liu, “Line-of-sight absorption of H2O vapor: gas temperature sensing in uniform and nonuniform flows,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, CA, 2006).

Ma, L.

Maiorov, M.

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Mandin, J.-Y.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Marchesi, M.

A. Corana, M. Marchesi, C. Matrini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,” ACM Trans. Math. Softw. 13, 262–280 (1987).
[CrossRef]

Martin, P.

V. Kasyutich and P. Martin, “Towards a two-dimensional concentration and temperature laser absorption tomography sensor system,” Appl. Phys. B 102, 149–162 (2011).
[CrossRef]

Martin, P. A.

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
[CrossRef]

Massie, S. T.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Masterson, P.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Matrini, C.

A. Corana, M. Marchesi, C. Matrini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,” ACM Trans. Math. Softw. 13, 262–280 (1987).
[CrossRef]

McCann, H.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

Mébarki, Y.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Mellouki, A.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Migliorini, F.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153, 384–393 (2008).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Mikhailenko, S. N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Miller, C. E.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Moazzen-Ahmadi, N.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Murray, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Naumenko, O. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Nikitin, A. V.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

O’Leary, D. P.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).
[CrossRef]

Orphal, J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Ouyang, X.

Ozanyan, K. B.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

Palaghita, T. I.

T. I. Palaghita and J. M. Seitzman, “Absorption-based temperature-distribution-sensing for combustor diagnostics and control,” in Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper AIAA-2006-0430.

Pegrum, S.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Perrin, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Persson, L.

Piccolomini, E. L.

E. L. Piccolomini and F. Zama, “The cojugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87–99 (1999).
[CrossRef]

Plemmons, D. H.

Predoi-Cross, A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University, 1992).

Reichel, L.

M. Fuhry and L. Reichel, “A new Tikhonov regularization method,” Numer. Algor. 59, 433–445 (2012).
[CrossRef]

Ridella, S.

A. Corana, M. Marchesi, C. Matrini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,” ACM Trans. Math. Softw. 13, 262–280 (1987).
[CrossRef]

Rieker, G. B.

Rinsland, C. P.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Robert, C.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Rotger, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Rothman, L. S.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Roy, S.

Sanders, S. T.

Sappey, A. D.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Saunders, W. R.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139–144 (2006).
[CrossRef]

Schulz, C.

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

Seitzman, J. M.

T. I. Palaghita and J. M. Seitzman, “Absorption-based temperature-distribution-sensing for combustor diagnostics and control,” in Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper AIAA-2006-0430.

Šimecková, M.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Smith, M. A. H.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Sung, K.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Svanberg, K.

Svanberg, S.

Svensson, T.

Takami, K.

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Tennyson, J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Terzija, N.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University, 1992).

Tikhonov, A. N.

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston & Sons, 1977).

Toth, R. A.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Turner, P.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Vandaele, A. C.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Vander Auwera, J.

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Vandsburger, U.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139–144 (2006).
[CrossRef]

Varghese, P. L.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University, 1992).

Wainner, R. T.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
[CrossRef]

Wang, F.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

Wang, J.

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

Webber, M. E.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Woodmansee, M. A.

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
[CrossRef]

Wright, P.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

Xin, L.

L. Xu, L. Xin, and Z. Cao, “l1-norm-based reconstruction algorithm for particle sizing,” Instrum. Meas. IEEE Trans. 61, 1395–1404 (2012).

Xu, L.

L. Xu, L. Xin, and Z. Cao, “l1-norm-based reconstruction algorithm for particle sizing,” Instrum. Meas. IEEE Trans. 61, 1395–1404 (2012).

Yan, J. H.

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

Yu, X.

Zama, F.

E. L. Piccolomini and F. Zama, “The cojugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87–99 (1999).
[CrossRef]

Zhao, Y.

Zhou, X.

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption,” AIAA J. 45, 390–398 (2007).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

Zizak, G.

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153, 384–393 (2008).
[CrossRef]

ACM Trans. Math. Softw.

A. Corana, M. Marchesi, C. Matrini, and S. Ridella, “Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm,” ACM Trans. Math. Softw. 13, 262–280 (1987).
[CrossRef]

AIAA J.

H. Li, X. Zhou, J. B. Jeffries, and R. K. Hanson, “Sensing and control of combustion instabilities in swirl-stabilized combustors using diode-laser absorption,” AIAA J. 45, 390–398 (2007).
[CrossRef]

X. Liu, J. B. Jeffries, and R. K. Hanson, “Measurement of nonuniform temperature distributions using line-of-sight absorption spectroscopy,” AIAA J. 45, 411–419 (2007).
[CrossRef]

Appl. Math. Comp.

E. L. Piccolomini and F. Zama, “The cojugate gradient regularization method in computed tomography problems,” Appl. Math. Comp. 102, 87–99 (1999).
[CrossRef]

Appl. Opt.

S. T. Sanders, J. Wang, J. B. Jeffries, and R. K. Hanson, “Diode-laser absorption sensor for line-of-sight gas temperature distributions,” Appl. Opt. 40, 4404–4415 (2001).
[CrossRef]

L. Ma and W. Cai, “Determination of the optimal regularization parameters in hyperspectral tomography,” Appl. Opt. 47, 4186–4192 (2008).
[CrossRef]

X. An, T. Kraetschmer, K. Takami, S. T. Sanders, L. Ma, W. Cai, X. Li, S. Roy, and J. R. Gord, “Validation of temperature imaging by H2O absorption spectroscopy using hyperspectral tomography in controlled experiments,” Appl. Opt. 50, A29–A37 (2011).
[CrossRef]

L. Persson, M. A. R. Lewander, M. Andersson, K. Svanberg, and S. Svanberg, “Simultaneous detection of molecular oxygen and water vapor in the tissue optical window using tunable diode laser spectroscopy,” Appl. Opt. 47, 2028–2034 (2008).
[CrossRef]

X. Ouyang and P. L. Varghese, “Line-of-sight absorption measurements of high temperature gases with thermal and concentration boundary layers,” Appl. Opt. 28, 3979–3984 (1989).
[CrossRef]

T. F. Holger Teichert, “Simultaneous in situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers,” Appl. Opt. 42, 2043–2051 (2003).
[CrossRef]

F. Li, X. Yu, H. Gu, Z. Li, Y. Zhao, L. Ma, L. Chen, and X. Chang, “Simultaneous measurements of multiple flow parameters for scramjet characterization using tunable diode-laser sensors,” Appl. Opt. 50, 6697–6707 (2011).
[CrossRef]

G. B. Rieker, J. B. Jeffries, and R. K. Hanson, “Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments,” Appl. Opt. 48, 5546–5560 (2009).
[CrossRef]

Appl. Phys. B

X. Liu, J. B. Jeffries, R. K. Hanson, K. M. Hinckley, and M. A. Woodmansee, “Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature,” Appl. Phys. B 82, 469–478 (2006).
[CrossRef]

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92, 367–378 (2008).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, and W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3 near 2.0 um,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

X. Zhou, J. B. Jeffries, and R. K. Hanson, “Development of a fast temperature sensor for combustion gases using a single tunable diode laser,” Appl. Phys. B 81, 711–722 (2005).
[CrossRef]

V. Kasyutich and P. Martin, “Towards a two-dimensional concentration and temperature laser absorption tomography sensor system,” Appl. Phys. B 102, 149–162 (2011).
[CrossRef]

Chem. Eng. J.

P. Wright, N. Terzija, J. L. Davidson, S. Garcia-Castillo, C. Garcia-Stewart, S. Pegrum, S. Colbourne, P. Turner, S. D. Crossley, T. Litt, S. Murray, K. B. Ozanyan, and H. McCann, “High-speed chemical species tomography in a multi-cylinder automotive engine,” Chem. Eng. J. 158, 2–10 (2010).

Chem. Soc. Rev.

P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002).
[CrossRef]

Combust. Flame

F. Migliorini, S. De Iuliis, F. Cignoli, and G. Zizak, “How ‘flat’ is the rich premixed flame produced by your McKenna burner?” Combust. Flame 153, 384–393 (2008).
[CrossRef]

Combust. Sci. Technol.

A. D. Sappey, P. Masterson, E. Huelson, J. Howell, M. Estes, H. Hofvander, and A. Jobson, “Results of closed-loop coal-fired boiler operation using a TDLAS sensor and smart process control software,” Combust. Sci. Technol. 183, 1282–1295 (2011).
[CrossRef]

Comput. Phys. Commun.

W. Cai, D. J. Ewing, and L. Ma, “Application of simulated annealing for multispectral tomography,” Comput. Phys. Commun. 179, 250–255 (2008).
[CrossRef]

Environ. Sci. J.

V. Catoire, F. Bernard, Y. Mébarki, A. Mellouki, G. Eyglunent, V. Daële, and C. Robert, “A tunable diode laser absorption spectrometer for formaldehyde atmospheric measurements validated by simulation chamber instrumentation,” Environ. Sci. J. 24, 22–33 (2012).
[CrossRef]

Exp. Fluids

T. Fuyuto, H. Kronemayer, B. Lewerich, J. Brübach, T. Fujikawa, K. Akihama, T. Dreier, and C. Schulz, “Temperature and species measurement in a quenching boundary layer on a flat-flame burner,” Exp. Fluids 49, 783–795 (2010).
[CrossRef]

IEEE Sens. J.

M. B. Frish, R. T. Wainner, M. C. Laderer, B. D. Green, and M. G. Allen, “Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy,” IEEE Sens. J. 10, 639–646 (2010).
[CrossRef]

Instrum. Meas. IEEE Trans.

L. Xu, L. Xin, and Z. Cao, “l1-norm-based reconstruction algorithm for particle sizing,” Instrum. Meas. IEEE Trans. 61, 1395–1404 (2012).

J. Quant. Spectrosc. Radiat. Transfer

L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birke, V. Boudon, L. R. Brown, A. Campargue, J.-P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J.-M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J.-Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Šimečková, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009).
[CrossRef]

Meas. Sci. Technol.

A. G. Hendricks, U. Vandsburger, W. R. Saunders, and W. T. Baumann, “The use of tunable diode laser absorption spectroscopy for the measurement of flame dynamics,” Meas. Sci. Technol. 17, 139–144 (2006).
[CrossRef]

A. Farooq and J. B. Jeffries, “In situ combustion measurements of H2O and temperature near 2.5 μm using tunable diode laser absorption,” Meas. Sci. Technol. 19, 75604 (2008).
[CrossRef]

J. Wang, M. Maiorov, J. B. Jeffries, D. Z. Garbuzov, J. C. Connolly, and R. K. Hanson, “A potential remote sensor of CO in vehicle exhausts using 2.3 μm micron diode lasers,” Meas. Sci. Technol. 11, 1576–1584 (2000).
[CrossRef]

X. Chao, J. B. Jeffries, and R. K. Hanson, “Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers,” Meas. Sci. Technol. 20, 115201 (2009).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Development of a sensor for temperature and water concentration in combustion gases using a single tunable diode laser,” Meas. Sci. Technol. 14, 1459–1468 (2003).
[CrossRef]

S. Li, A. Farooq, and R. K. Hanson, “H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 μm,” Meas. Sci. Technol. 22, 125301 (2011).
[CrossRef]

F. Wang, K. F. Cen, N. Li, J. B. Jeffries, Q. X. Huang, J. H. Yan, and Y. Chi, “Two-dimensional tomography for gas concentration and temperature distributions based on tunable diode laser absorption spectroscopy,” Meas. Sci. Technol. 21, 45301–45310 (2010).
[CrossRef]

N. Terzija, J. L. Davidson, C. A. Garcia-Stewart, P. Wright, K. B. Ozanyan, S. Pegrum, T. J. Litt, and H. McCann, “Image optimization for chemical species tomography with an irregular and sparse beam array,” Meas. Sci. Technol. 19, 94007 (2008).
[CrossRef]

X. Zhou, X. Liu, J. B. Jeffries, and R. K. Hanson, “Selection of NIR H2O absorption transitions for in-cylinder measurement of temperature in IC engines,” Meas. Sci. Technol. 16, 2437–2445 (2005).
[CrossRef]

M. G. Allen, “Diode laser absorption sensors for gas-dynamic and combustion flows,” Meas. Sci. Technol. 9, 545–562 (1998).
[CrossRef]

Numer. Algor.

M. Fuhry and L. Reichel, “A new Tikhonov regularization method,” Numer. Algor. 59, 433–445 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

SIAM J. Sci. Comput.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-posed problems,” SIAM J. Sci. Comput. 14, 1487–1503 (1993).
[CrossRef]

Other

X. Liu, “Line-of-sight absorption of H2O vapor: gas temperature sensing in uniform and nonuniform flows,” Ph.D. dissertation (Department of Mechanical Engineering, Stanford University, Stanford, CA, 2006).

A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Winston & Sons, 1977).

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN: The Art of Scientific Computing (Cambridge University, 1992).

T. I. Palaghita and J. M. Seitzman, “Absorption-based temperature-distribution-sensing for combustor diagnostics and control,” in Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit (AIAA, 2006), paper AIAA-2006-0430.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

(a) Nonuniform temperature and (b) concentration distributions in simulation.

Fig. 2.
Fig. 2.

Dependence of eT on the regularization parameter γT with γX=γT×106 and γX=0, respectively.

Fig. 3.
Fig. 3.

Dependence of D, γT×RT. and eT on the regularization parameter γT in case of (a) γX=0 and (b) γX=γT×106, respectively.

Fig. 4.
Fig. 4.

(a) Temperature distribution obtained by using the nonlinear regularization method and (b) concentration distributions obtained by using the (CLSF and three regularization methods.

Fig. 5.
Fig. 5.

(a) Reconstructed temperature distribution and (b) deviations from the original for 100 repetitive simulations by using the nonlinear regularization method with an SNR of 40 dB.

Fig. 6.
Fig. 6.

(a) Reconstructed concentration distribution and (b) deviations from the original for 100 repetitive simulations by using the CLSF and the three regularization methods with an SNR of 40 dB.

Fig. 7.
Fig. 7.

Variations of (a) the mean of XSTDdev(j) and (b) the STD of XMEANdev(j) (noted as STD of XMEANdev) with six bins obtained by using TSVD, Tikhonov regularization, and the revised Tikhonov regularization method with SNR varying from 30 to 60 dB.

Fig. 8.
Fig. 8.

Schematic of the line-of-sight TDLAS experimental setup.

Fig. 9.
Fig. 9.

(a) Schematic of the circular flame burner and (b) photo of the flame with nonuniform temperature profile generated by the burner.

Fig. 10.
Fig. 10.

(a) Parabolic-like temperature distribution measured by a thermocouple and (b) dependence of fraction of path length on the STD of temperature.

Fig. 11.
Fig. 11.

(a) Temperature contours in the computation domain and (b) comparison of temperature profile 10 mm above the fuel distributer between simulation data and thermocouple-measured data.

Fig. 12.
Fig. 12.

(a) Mole fraction contours of water vapor in the computation domain and (b) distribution of mole fraction of water vapor 10 mm above the fuel distributer.

Fig. 13.
Fig. 13.

(a) Reconstructed temperature distribution and (b) deviations from the data obtained from Fig. 12(b) for 20 repetitive measurements by using the nonlinear regularization method.

Fig. 14.
Fig. 14.

(a) Reconstructed concentration distribution and (b) deviations from the data obtained from Fig. 13(b) for 20 repetitive measurements by using the nonlinear regularization method.

Tables (4)

Tables Icon

Table 1. 12 H2O Absorption Transitions Selected for Simulation and Experiment

Tables Icon

Table 2. Comparison of the Values of eX with 6 Bins Calculated by Using the Three Linear Regularization Methods with Noise-free Data

Tables Icon

Table 3. 12 Integrated Absorbances of the Absorption Transitions and Their Uncertainties from 20 Repetitive Experiments

Tables Icon

Table 4. Comparison of the STD of XMEANdev(j) and the Mean of XSTDdev(j) by Using the Three Linear Regularization Methods with Measured Data

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

(ItI0)v=exp(P0LX(x)Si[T(x)]ϕvdx),
S(T)=S(T0)Q(T0)Q(T)(T0T)exp[hcEk(1T1T0)]×[1exp(hcv0kT)][1exp(hcv0kT0)]1,
αv=ln(ItI0)v=P0LX(x)Si[T(x)]ϕvdx.
Ai=αvdv=P0LX(x)Si[T(x)]dx.
A˜=APL/n=j=1n[S(Tj)Xj].
[S1(T1)S1(T2)S1(Tn)S2(T1)S2(T2)S2(Tn)Sm(T1)Sm(T2)Sm(Tn)]·[X1X2Xn]=[A˜1A˜2A˜m],
SX=A˜,
D(Trec,Xrec)=i=1m[A˜imA˜ic]2[A˜im]2,
RT(T)=j=2n1[Tj12(Tj1+Tj+1)],
RX(X)=j=2n1[Xj12(Xj1+Xj+1)],
F(Trec,Xrec)=D(Trec,Xrec)+γT·RT(Trec)+γX·RX(Xrec),
minXji=1m(j=1n(Si(Tj)·Xj)A˜i)20Xj1(j=1,,n),
minXSXA˜2X0
S=UVT,
=diag[σ1,σ2,,σn]Rm×n.
Sk=UkVT=j=1kσjujvjT,
Xk=VkUTA˜=j=1kujTA˜σjvj,
minXRn{SXA˜2+λ2X2}.
Xλ=(STS+λ2I)1STA˜
Xλ=V(T+λ2I)1TUTA˜=j=1nσjσj2+λ2ujTA˜vj.
X=j=1kujTA˜σjvj+j=k+1nσjσj2+λ2ujTA˜vj,
X=VDλTUTA˜,
αv,peak=P·Si(T)·XH2O·L·ϕV,peak.
E(T)=khc·TQ(T)·d[T·Q(T)]dT.
eT=1nj=1n(TjTrefj)21nj=1nTrefj2=j=1n(TjTrefj)2j=1nTrefj2,
eX=1nj=1n(XjXrefj)21nj=1nXrefj2=j=1n(XjXrefj)2j=1nXrefj2,
SNR=20log(S/N),
u(A)=j=1n(AjA¯)2n(n1),

Metrics