Abstract

Sintered polytetrafluoroethylene (PTFE) is highly reflective and is widely used as a reference standard in remote sensing, radiometry, and spectroscopy. The relative change in output flux from a PTFE integrating sphere over the room temperature phase transition at 19°C has been measured at a monochromatic wavelength of 633 nm as 1.82±0.21%. The change in output flux was attributed to a small change of 0.09±0.02% in the total hemispherical reflectance of PTFE, caused by a change in its material density as a result of the phase transition. For the majority of users, this small change measured in total hemispherical reflectance is unlikely to impact significantly the accuracy of PTFE flat panel reflectors used as reference standards. However, owing to the multiple reflections that occur inside an integrating sphere cavity, the effect is multiplied and remedial action should be applied, either via a mathematical correction or through temperature stabilization of the integrating sphere when high accuracy (<5%) measurements of flux, irradiance, or radiance are required from PTFE-based integrating spheres at temperatures close to the phase transition at 19°C.

© 2013 USG

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Xiong and W. Barnes, “An overview of MODIS radiometric calibration and characterization,” Adv. Atmos. Sci. 23, 69–79 (2006).
    [CrossRef]
  2. C. S. Bourgeois, P. Calanca, and A. Ohmura, “A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow,” J. Geophys. Res. 111, 1984–2012 (2006).
    [CrossRef]
  3. J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
    [CrossRef]
  4. S. R. Sandmeier and K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
    [CrossRef]
  5. J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
    [CrossRef]
  6. H. S. Negi and A. Kokhanovsky, “Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin,” Cryosphere 5, 203–217 (2011).
    [CrossRef]
  7. D. K. Perovich, “Seasonal evolution of the albedo of multiyear Arctic sea ice,” J. Geophys. Res. 107, 8044 (2002).
    [CrossRef]
  8. M. A. Tschudi, J. A. Maslanik, and D. K. Perovich, “Derivation of melt pond coverage on Arctic sea ice using MODIS observations,” Remote Sens. Environ. 112, 2605–2614 (2008).
    [CrossRef]
  9. H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
    [CrossRef]
  10. A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380, 379–390 (1999).
    [CrossRef]
  11. V. R. Weidner and J. J. Hsia, “Reflection properties of pressed polytetrafluoroethylene powder,” J. Opt. Soc. Am. 71, 856–861 (1981).
    [CrossRef]
  12. L. Ylianttila and J. Schreder, “Temperature effects of PTFE diffusers,” Opt. Mater. 27, 1811–1814 (2005).
    [CrossRef]
  13. F. A. Quinn, D. E. Roberts, and R. N. Work, “Volume-temperature relationships for the room temperature transition in Teflon,” J. Appl. Phys. 22, 1085 (1951).
    [CrossRef]
  14. R. K. Kirby, “Thermal expansion of polytetrafluoroethylene (Teflon) from −190° to +300°C,” J. Res. Natl. Bur. Stand. 57, 91–94 (1956).
    [CrossRef]
  15. E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40, 4659–4665 (1999).
    [CrossRef]
  16. T. Yamamoto and T. Hara, “X-ray and Monte Carlo studies on the 19°C transition of poly (tetrafluoroethylene),” Polymer 27, 986–992 (1986).
    [CrossRef]
  17. R. McKenzie, J. Badosa, M. Kotkamp, and P. Johnston, “Effects of the temperature dependence in PTFE diffusers on observed UV irradiances,” Geophys. Res. Lett. 32, L06808 (2005).
    [CrossRef]
  18. B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
    [CrossRef]
  19. E. F. Zalewski and C. R. Duda, “Silicon photodiode device with 100% external quantum efficiency,” Appl. Opt. 22, 2867–2873 (1983).
    [CrossRef]
  20. K. F. Carr, “Integrating sphere theory and applications part 1: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
    [CrossRef]
  21. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 2nd ed. (Taylor & Francis, 1981).

2011

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

H. S. Negi and A. Kokhanovsky, “Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin,” Cryosphere 5, 203–217 (2011).
[CrossRef]

2008

M. A. Tschudi, J. A. Maslanik, and D. K. Perovich, “Derivation of melt pond coverage on Arctic sea ice using MODIS observations,” Remote Sens. Environ. 112, 2605–2614 (2008).
[CrossRef]

B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
[CrossRef]

2006

X. Xiong and W. Barnes, “An overview of MODIS radiometric calibration and characterization,” Adv. Atmos. Sci. 23, 69–79 (2006).
[CrossRef]

C. S. Bourgeois, P. Calanca, and A. Ohmura, “A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow,” J. Geophys. Res. 111, 1984–2012 (2006).
[CrossRef]

2005

L. Ylianttila and J. Schreder, “Temperature effects of PTFE diffusers,” Opt. Mater. 27, 1811–1814 (2005).
[CrossRef]

R. McKenzie, J. Badosa, M. Kotkamp, and P. Johnston, “Effects of the temperature dependence in PTFE diffusers on observed UV irradiances,” Geophys. Res. Lett. 32, L06808 (2005).
[CrossRef]

2004

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

2002

D. K. Perovich, “Seasonal evolution of the albedo of multiyear Arctic sea ice,” J. Geophys. Res. 107, 8044 (2002).
[CrossRef]

1999

A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380, 379–390 (1999).
[CrossRef]

S. R. Sandmeier and K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40, 4659–4665 (1999).
[CrossRef]

1997

K. F. Carr, “Integrating sphere theory and applications part 1: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[CrossRef]

1986

T. Yamamoto and T. Hara, “X-ray and Monte Carlo studies on the 19°C transition of poly (tetrafluoroethylene),” Polymer 27, 986–992 (1986).
[CrossRef]

1983

1981

1956

R. K. Kirby, “Thermal expansion of polytetrafluoroethylene (Teflon) from −190° to +300°C,” J. Res. Natl. Bur. Stand. 57, 91–94 (1956).
[CrossRef]

1951

F. A. Quinn, D. E. Roberts, and R. N. Work, “Volume-temperature relationships for the room temperature transition in Teflon,” J. Appl. Phys. 22, 1085 (1951).
[CrossRef]

Allen, D. W.

B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
[CrossRef]

Badosa, J.

R. McKenzie, J. Badosa, M. Kotkamp, and P. Johnston, “Effects of the temperature dependence in PTFE diffusers on observed UV irradiances,” Geophys. Res. Lett. 32, L06808 (2005).
[CrossRef]

Barnes, W.

X. Xiong and W. Barnes, “An overview of MODIS radiometric calibration and characterization,” Adv. Atmos. Sci. 23, 69–79 (2006).
[CrossRef]

Bourgeois, C. S.

C. S. Bourgeois, P. Calanca, and A. Ohmura, “A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow,” J. Geophys. Res. 111, 1984–2012 (2006).
[CrossRef]

Calanca, P.

C. S. Bourgeois, P. Calanca, and A. Ohmura, “A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow,” J. Geophys. Res. 111, 1984–2012 (2006).
[CrossRef]

Carr, K. F.

K. F. Carr, “Integrating sphere theory and applications part 1: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[CrossRef]

Clark, E. S.

E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40, 4659–4665 (1999).
[CrossRef]

Duda, C. R.

Erbland, J.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Fox, N. P.

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

France, J. L.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Frey, M. M.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Hanssen, L. M.

B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
[CrossRef]

Hara, K.

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

Hara, T.

T. Yamamoto and T. Hara, “X-ray and Monte Carlo studies on the 19°C transition of poly (tetrafluoroethylene),” Polymer 27, 986–992 (1986).
[CrossRef]

Honda, Y.

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

Howell, J. R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 2nd ed. (Taylor & Francis, 1981).

Hsia, J. J.

Itten, K. I.

S. R. Sandmeier and K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

Johnston, P.

R. McKenzie, J. Badosa, M. Kotkamp, and P. Johnston, “Effects of the temperature dependence in PTFE diffusers on observed UV irradiances,” Geophys. Res. Lett. 32, L06808 (2005).
[CrossRef]

Kajiwara, K.

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

King, M. D.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Kirby, R. K.

R. K. Kirby, “Thermal expansion of polytetrafluoroethylene (Teflon) from −190° to +300°C,” J. Res. Natl. Bur. Stand. 57, 91–94 (1956).
[CrossRef]

Kokhanovsky, A.

H. S. Negi and A. Kokhanovsky, “Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin,” Cryosphere 5, 203–217 (2011).
[CrossRef]

Kotkamp, M.

R. McKenzie, J. Badosa, M. Kotkamp, and P. Johnston, “Effects of the temperature dependence in PTFE diffusers on observed UV irradiances,” Geophys. Res. Lett. 32, L06808 (2005).
[CrossRef]

Kowalewski, M.

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

MacArthur, A.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Maslanik, J. A.

M. A. Tschudi, J. A. Maslanik, and D. K. Perovich, “Derivation of melt pond coverage on Arctic sea ice using MODIS observations,” Remote Sens. Environ. 112, 2605–2614 (2008).
[CrossRef]

McKenzie, R.

R. McKenzie, J. Badosa, M. Kotkamp, and P. Johnston, “Effects of the temperature dependence in PTFE diffusers on observed UV irradiances,” Geophys. Res. Lett. 32, L06808 (2005).
[CrossRef]

Negi, H. S.

H. S. Negi and A. Kokhanovsky, “Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin,” Cryosphere 5, 203–217 (2011).
[CrossRef]

Ohmura, A.

C. S. Bourgeois, P. Calanca, and A. Ohmura, “A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow,” J. Geophys. Res. 111, 1984–2012 (2006).
[CrossRef]

Otter, G.

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

Park, J. G.

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

Pegrum, H. M.

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

Perovich, D. K.

M. A. Tschudi, J. A. Maslanik, and D. K. Perovich, “Derivation of melt pond coverage on Arctic sea ice using MODIS observations,” Remote Sens. Environ. 112, 2605–2614 (2008).
[CrossRef]

D. K. Perovich, “Seasonal evolution of the albedo of multiyear Arctic sea ice,” J. Geophys. Res. 107, 8044 (2002).
[CrossRef]

Picard, G.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Preunkert, S.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Quinn, F. A.

F. A. Quinn, D. E. Roberts, and R. N. Work, “Volume-temperature relationships for the room temperature transition in Teflon,” J. Appl. Phys. 22, 1085 (1951).
[CrossRef]

Roberts, D. E.

F. A. Quinn, D. E. Roberts, and R. N. Work, “Volume-temperature relationships for the room temperature transition in Teflon,” J. Appl. Phys. 22, 1085 (1951).
[CrossRef]

Sandmeier, S. R.

S. R. Sandmeier and K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

Savarino, J.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Schreder, J.

L. Ylianttila and J. Schreder, “Temperature effects of PTFE diffusers,” Opt. Mater. 27, 1811–1814 (2005).
[CrossRef]

Siegel, R.

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 2nd ed. (Taylor & Francis, 1981).

Springsteen, A.

A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380, 379–390 (1999).
[CrossRef]

Susaki, J.

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

Tsai, B. K.

B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
[CrossRef]

Tschudi, M. A.

M. A. Tschudi, J. A. Maslanik, and D. K. Perovich, “Derivation of melt pond coverage on Arctic sea ice using MODIS observations,” Remote Sens. Environ. 112, 2605–2614 (2008).
[CrossRef]

van Riel, L.

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

Weidner, V. R.

Wilthan, B.

B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
[CrossRef]

Woolliams, E. R.

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

Work, R. N.

F. A. Quinn, D. E. Roberts, and R. N. Work, “Volume-temperature relationships for the room temperature transition in Teflon,” J. Appl. Phys. 22, 1085 (1951).
[CrossRef]

Xiong, X.

X. Xiong and W. Barnes, “An overview of MODIS radiometric calibration and characterization,” Adv. Atmos. Sci. 23, 69–79 (2006).
[CrossRef]

Yamamoto, T.

T. Yamamoto and T. Hara, “X-ray and Monte Carlo studies on the 19°C transition of poly (tetrafluoroethylene),” Polymer 27, 986–992 (1986).
[CrossRef]

Yasuda, Y.

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

Ylianttila, L.

L. Ylianttila and J. Schreder, “Temperature effects of PTFE diffusers,” Opt. Mater. 27, 1811–1814 (2005).
[CrossRef]

Zalewski, E. F.

Zeng, J.

B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
[CrossRef]

Adv. Atmos. Sci.

X. Xiong and W. Barnes, “An overview of MODIS radiometric calibration and characterization,” Adv. Atmos. Sci. 23, 69–79 (2006).
[CrossRef]

Anal. Chim. Acta

A. Springsteen, “Standards for the measurement of diffuse reflectance—an overview of available materials and measurement laboratories,” Anal. Chim. Acta 380, 379–390 (1999).
[CrossRef]

Appl. Opt.

Atmos. Chem. Phys.

J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, S. Preunkert, A. MacArthur, and J. Savarino, “Snow optical properties at Dome C (Concordia), Antarctica; implications for snow emissions and snow chemistry of reactive nitrogen,” Atmos. Chem. Phys. 11, 9787–9801 (2011).
[CrossRef]

Cryosphere

H. S. Negi and A. Kokhanovsky, “Retrieval of snow albedo and grain size using reflectance measurements in Himalayan basin,” Cryosphere 5, 203–217 (2011).
[CrossRef]

Geophys. Res. Lett.

R. McKenzie, J. Badosa, M. Kotkamp, and P. Johnston, “Effects of the temperature dependence in PTFE diffusers on observed UV irradiances,” Geophys. Res. Lett. 32, L06808 (2005).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

S. R. Sandmeier and K. I. Itten, “A field goniometer system (FIGOS) for acquisition of hyperspectral BRDF data,” IEEE Trans. Geosci. Remote Sens. 37, 978–986 (1999).
[CrossRef]

J. Susaki, K. Hara, J. G. Park, Y. Yasuda, K. Kajiwara, and Y. Honda, “Validation of temporal BRDFs of paddy fields estimated from MODIS reflectance data,” IEEE Trans. Geosci. Remote Sens. 42, 1262–1270 (2004).
[CrossRef]

J. Appl. Phys.

F. A. Quinn, D. E. Roberts, and R. N. Work, “Volume-temperature relationships for the room temperature transition in Teflon,” J. Appl. Phys. 22, 1085 (1951).
[CrossRef]

J. Geophys. Res.

C. S. Bourgeois, P. Calanca, and A. Ohmura, “A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow,” J. Geophys. Res. 111, 1984–2012 (2006).
[CrossRef]

D. K. Perovich, “Seasonal evolution of the albedo of multiyear Arctic sea ice,” J. Geophys. Res. 107, 8044 (2002).
[CrossRef]

J. Opt. Soc. Am.

J. Res. Natl. Bur. Stand.

R. K. Kirby, “Thermal expansion of polytetrafluoroethylene (Teflon) from −190° to +300°C,” J. Res. Natl. Bur. Stand. 57, 91–94 (1956).
[CrossRef]

Opt. Mater.

L. Ylianttila and J. Schreder, “Temperature effects of PTFE diffusers,” Opt. Mater. 27, 1811–1814 (2005).
[CrossRef]

Polymer

E. S. Clark, “The molecular conformations of polytetrafluoroethylene: forms II and IV,” Polymer 40, 4659–4665 (1999).
[CrossRef]

T. Yamamoto and T. Hara, “X-ray and Monte Carlo studies on the 19°C transition of poly (tetrafluoroethylene),” Polymer 27, 986–992 (1986).
[CrossRef]

Proc. SPIE

B. K. Tsai, D. W. Allen, L. M. Hanssen, B. Wilthan, and J. Zeng, “A comparison of optical properties between solid PTFE (Teflon) and (low density) sintered PTFE,” Proc. SPIE 7065, 70650Y (2008).
[CrossRef]

H. M. Pegrum, E. R. Woolliams, N. P. Fox, L. van Riel, G. Otter, and M. Kowalewski, “Calibration of the NPL transfer standard absolute radiance source (TSARS) and its use with GOME 2-FM3 spectral radiance measurements,” Proc. SPIE 5570, 503–514 (2004).
[CrossRef]

Remote Sens. Environ.

M. A. Tschudi, J. A. Maslanik, and D. K. Perovich, “Derivation of melt pond coverage on Arctic sea ice using MODIS observations,” Remote Sens. Environ. 112, 2605–2614 (2008).
[CrossRef]

Surf. Coat. Int.

K. F. Carr, “Integrating sphere theory and applications part 1: integrating sphere theory and design,” Surf. Coat. Int. 80, 380–385 (1997).
[CrossRef]

Other

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 2nd ed. (Taylor & Francis, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experiment setup.

Fig. 2.
Fig. 2.

Relative change in flux (top) and temperature (bottom) over a 12 h period for the PTFE integrating sphere, demonstrating the stability of the measurement setup.

Fig. 3.
Fig. 3.

Relative change in flux (top) and the measured temperature (bottom) of the PTFE integrating sphere, when the temperature is increased in a stepwise fashion.

Fig. 4.
Fig. 4.

Relative change in flux (top) and the measured temperature (bottom) of the barium sulfate integrating sphere, when the temperature is increased in a stepwise fashion.

Fig. 5.
Fig. 5.

Relative change in output flux with temperature for the PTFE sphere and the barium sulfate sphere. Uncertainty bars are given at 2σ.

Fig. 6.
Fig. 6.

Relative change in reflectance with temperature from 14°C to 28°C for the PTFE sphere and the barium sulfate sphere. Uncertainty bars are calculated using the standard error of the averaged measurements with an additional uncertainty term of 20% owing to uncertainty associated with the sphere multiplier.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L=ΦiπAs×ρ1ρ(1f),
δL=(Lrs)δrs+(Lρ)δρ,
δLL=2δrsrs+δρρ×ρ1ρ(1f).
Φ=ApΩdetpL,
δΦΦ=δApAp+δΩdetpΩdetp+δLL.
δApAp=2δrprp.
δΦΦ=δρρ×ρ1ρ(1f).

Metrics