Abstract

Sintered polytetrafluoroethylene (PTFE) is highly reflective and is widely used as a reference standard in remote sensing, radiometry, and spectroscopy. The relative change in output flux from a PTFE integrating sphere over the room temperature phase transition at 19°C has been measured at a monochromatic wavelength of 633 nm as 1.82±0.21%. The change in output flux was attributed to a small change of 0.09±0.02% in the total hemispherical reflectance of PTFE, caused by a change in its material density as a result of the phase transition. For the majority of users, this small change measured in total hemispherical reflectance is unlikely to impact significantly the accuracy of PTFE flat panel reflectors used as reference standards. However, owing to the multiple reflections that occur inside an integrating sphere cavity, the effect is multiplied and remedial action should be applied, either via a mathematical correction or through temperature stabilization of the integrating sphere when high accuracy (<5%) measurements of flux, irradiance, or radiance are required from PTFE-based integrating spheres at temperatures close to the phase transition at 19°C.

© 2013 USG

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription