Abstract

The Japan Aerospace Exploration Agency has studied a large-scale lightweight mirror constructed of reaction-bonded silicon carbide-based material as a key technology in future astronomical and earth observation missions. The authors selected silicon carbide as the promising candidate due to excellent characteristics of specific stiffness and thermal stability. One of the most important technical issues for large-scale ceramic components is the uniformity of the material’s property, depending on part and processing. It might influence mirror accuracy due to uneven thermal deformation. The authors conducted systematic case studies for the conditions of CTE by finite element analysis to know the typical influence of material property nonuniformity on mirror accuracy and consequently derived a comprehensive empirical equation for the series of CTE’s main factors. In addition, the authors computationally reproduced the mirror accuracy profile of a small prototype mirror shown in cryogenic testing and hereby verified wide-range practical computational evaluation technology of mirror accuracy.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Edeson, G. S. Aglietti, and A. R. L. Tatnall, “Conventional stable structures for space optics: the state of the art,” Acta Astronaut. 66, 13–32 (2010).
    [CrossRef]
  2. J. W. Bilbro, “Lightweight mirrors/optical materials,” in Encyclopedia of Modern Optics, R. D. Guenther, G. D. Steel, and L. Bayvel, eds. (Elsevier, 2005), pp. 460–466.
  3. J. S. Goela and R. L. Taylor, “Large scale fabrication of lightweight Si/SiC lidar mirrors,” Proc. SPIE 1118, 14–24 (1989).
    [CrossRef]
  4. R. A. Paquin, M. B. Magida, and C. L. Vernold, “Large optics from silicon carbide,” Proc. SPIE 1618, 53–60 (1991).
    [CrossRef]
  5. Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
    [CrossRef]
  6. E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
    [CrossRef]
  7. J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.
  8. H. Kaneda, T. Onaka, and R. Yamashiro, “Development of SiC mirror for ASTRO-F,” The Institute of Space and Astronautical Science Report 14, 289–295 (2000).
  9. D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005).
    [CrossRef]
  10. S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
    [CrossRef]
  11. M. R. Krödel and T. Ozaki, “HB-cesic composite for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
    [CrossRef]
  12. T. Nakagawa, and SPICA Working Group, “SPICA: space infrared telescope for cosmology and astrophysics,” Adv. Space Res. 34, 645–650 (2004).
    [CrossRef]
  13. T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123–1127 (2005).
    [CrossRef]
  14. R. Y. Paul, Opto-mechanical Systems Design, 3rd ed. (SPIE, 2006), pp. 111–112.
  15. K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
    [CrossRef]
  16. H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
    [CrossRef]

2010 (1)

R. Edeson, G. S. Aglietti, and A. R. L. Tatnall, “Conventional stable structures for space optics: the state of the art,” Acta Astronaut. 66, 13–32 (2010).
[CrossRef]

2007 (2)

M. R. Krödel and T. Ozaki, “HB-cesic composite for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
[CrossRef]

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

2005 (3)

T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123–1127 (2005).
[CrossRef]

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005).
[CrossRef]

2004 (3)

T. Nakagawa, and SPICA Working Group, “SPICA: space infrared telescope for cosmology and astrophysics,” Adv. Space Res. 34, 645–650 (2004).
[CrossRef]

Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
[CrossRef]

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

2003 (1)

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

2000 (1)

H. Kaneda, T. Onaka, and R. Yamashiro, “Development of SiC mirror for ASTRO-F,” The Institute of Space and Astronautical Science Report 14, 289–295 (2000).

1991 (1)

R. A. Paquin, M. B. Magida, and C. L. Vernold, “Large optics from silicon carbide,” Proc. SPIE 1618, 53–60 (1991).
[CrossRef]

1989 (1)

J. S. Goela and R. L. Taylor, “Large scale fabrication of lightweight Si/SiC lidar mirrors,” Proc. SPIE 1118, 14–24 (1989).
[CrossRef]

Aglietti, G. S.

R. Edeson, G. S. Aglietti, and A. R. L. Tatnall, “Conventional stable structures for space optics: the state of the art,” Acta Astronaut. 66, 13–32 (2010).
[CrossRef]

Bilbro, J. W.

J. W. Bilbro, “Lightweight mirrors/optical materials,” in Encyclopedia of Modern Optics, R. D. Guenther, G. D. Steel, and L. Bayvel, eds. (Elsevier, 2005), pp. 460–466.

Bougoin, M.

D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005).
[CrossRef]

J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.

Breysse, J.

D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005).
[CrossRef]

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.

Castel, D.

J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.

Chambure, D.

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

Dai, Y.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Daniel, D. C.

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

Deny, P.

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

Ebizuka, N.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Edeson, R.

R. Edeson, G. S. Aglietti, and A. R. L. Tatnall, “Conventional stable structures for space optics: the state of the art,” Acta Astronaut. 66, 13–32 (2010).
[CrossRef]

Emmanuel, S. Y.

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

Enya, K.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Eto, H.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Goela, J. S.

J. S. Goela and R. L. Taylor, “Large scale fabrication of lightweight Si/SiC lidar mirrors,” Proc. SPIE 1118, 14–24 (1989).
[CrossRef]

Göran, P.

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

Han, J.

Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
[CrossRef]

He, X.

Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
[CrossRef]

Hirabayashi, M.

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

Irikado, H.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Ishida, J.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Itoh, Y.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Kaneda, H.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

H. Kaneda, T. Onaka, and R. Yamashiro, “Development of SiC mirror for ASTRO-F,” The Institute of Space and Astronautical Science Report 14, 289–295 (2000).

Kataza, H.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Kimura, T.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Krödel, M. R.

M. R. Krödel and T. Ozaki, “HB-cesic composite for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
[CrossRef]

Laviron, B.

J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.

Lin, W.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Logut, D.

D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005).
[CrossRef]

J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.

Magida, M. B.

R. A. Paquin, M. B. Magida, and C. L. Vernold, “Large optics from silicon carbide,” Proc. SPIE 1618, 53–60 (1991).
[CrossRef]

Makiuti, S.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Matsuhara, H.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Michel, D.

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

Miyamoto, M.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Murakami, H.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Nakagawa, T.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123–1127 (2005).
[CrossRef]

T. Nakagawa, and SPICA Working Group, “SPICA: space infrared telescope for cosmology and astrophysics,” Adv. Space Res. 34, 645–650 (2004).
[CrossRef]

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

Omori, H.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Onaka, T.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123–1127 (2005).
[CrossRef]

H. Kaneda, T. Onaka, and R. Yamashiro, “Development of SiC mirror for ASTRO-F,” The Institute of Space and Astronautical Science Report 14, 289–295 (2000).

Oono, K.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Ozaki, T.

M. R. Krödel and T. Ozaki, “HB-cesic composite for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
[CrossRef]

Paquin, R. A.

R. A. Paquin, M. B. Magida, and C. L. Vernold, “Large optics from silicon carbide,” Proc. SPIE 1618, 53–60 (1991).
[CrossRef]

Paul, R. Y.

R. Y. Paul, Opto-mechanical Systems Design, 3rd ed. (SPIE, 2006), pp. 111–112.

Pierre, D.

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

Saruwatari, H.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Sein, E.

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

Suyama, S.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Suzuki, T.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Tange, Y.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Tatnall, A. R. L.

R. Edeson, G. S. Aglietti, and A. R. L. Tatnall, “Conventional stable structures for space optics: the state of the art,” Acta Astronaut. 66, 13–32 (2010).
[CrossRef]

Taylor, R. L.

J. S. Goela and R. L. Taylor, “Large scale fabrication of lightweight Si/SiC lidar mirrors,” Proc. SPIE 1118, 14–24 (1989).
[CrossRef]

Thomas, P.

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

Toulemont, F. S.

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

Toulemont, Y.

D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005).
[CrossRef]

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

Tsuno, K.

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Vernold, C. L.

R. A. Paquin, M. B. Magida, and C. L. Vernold, “Large optics from silicon carbide,” Proc. SPIE 1618, 53–60 (1991).
[CrossRef]

Watarai, H.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

Yamashiro, R.

H. Kaneda, T. Onaka, and R. Yamashiro, “Development of SiC mirror for ASTRO-F,” The Institute of Space and Astronautical Science Report 14, 289–295 (2000).

Yao, W.

Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
[CrossRef]

Yui, Y. Y.

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

Zhang, J.

Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
[CrossRef]

Zhang, Y.

Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
[CrossRef]

Acta Astronaut. (1)

R. Edeson, G. S. Aglietti, and A. R. L. Tatnall, “Conventional stable structures for space optics: the state of the art,” Acta Astronaut. 66, 13–32 (2010).
[CrossRef]

Adv. Space Res. (2)

T. Nakagawa, and SPICA Working Group, “SPICA: space infrared telescope for cosmology and astrophysics,” Adv. Space Res. 34, 645–650 (2004).
[CrossRef]

T. Onaka and T. Nakagawa, “SPICA: a 3.5 m space infrared telescope for mid- and far-infrared astronomy,” Adv. Space Res. 36, 1123–1127 (2005).
[CrossRef]

Mater. Lett. (1)

Y. Zhang, J. Zhang, J. Han, X. He, and W. Yao, “Large-scale fabrication of lightweight Si/SiC ceramic composite optical mirror,” Mater. Lett. 58, 1204–1208 (2004).
[CrossRef]

Proc. SPIE (8)

E. Sein, Y. Toulemont, J. Breysse, P. Deny, D. Chambure, T. Nakagawa, and M. Hirabayashi, “A new generation of large SiC telescopes for space applications,” Proc. SPIE 5528, 83 (2004).
[CrossRef]

D. Logut, J. Breysse, Y. Toulemont, and M. Bougoin, “Light weight monolithic silicon carbide telescope for space application,” Proc. SPIE 5962, 59621Q (2005).
[CrossRef]

S. Y. Emmanuel, F. S. Toulemont, D. Michel, D. Pierre, D. C. Daniel, P. Thomas, and P. Göran, “A ϕ3.5  m SiC telescope for Herschel mission,” Proc. SPIE 4850, 606–618 (2003).
[CrossRef]

M. R. Krödel and T. Ozaki, “HB-cesic composite for space optics and structures,” Proc. SPIE 6666, 66660E (2007).
[CrossRef]

J. S. Goela and R. L. Taylor, “Large scale fabrication of lightweight Si/SiC lidar mirrors,” Proc. SPIE 1118, 14–24 (1989).
[CrossRef]

R. A. Paquin, M. B. Magida, and C. L. Vernold, “Large optics from silicon carbide,” Proc. SPIE 1618, 53–60 (1991).
[CrossRef]

K. Tsuno, H. Irikado, K. Oono, J. Ishida, S. Suyama, Y. Itoh, N. Ebizuka, H. Eto, Y. Dai, W. Lin, T. Suzuki, H. Omori, Y. Y. Yui, T. Kimura, and Y. Tange, “New-technology silicon carbide (NT-SiC): demonstration of new material for large lightweight optical mirror,” Proc. SPIE 5659, 138–145 (2005).
[CrossRef]

H. Kaneda, T. Nakagawa, T. Onaka, K. Enya, H. Kataza, S. Makiuti, H. Matsuhara, M. Miyamoto, H. Murakami, H. Saruwatari, H. Watarai, and Y. Y. Yui, “Development of lightweight SiC Mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission,” Proc. SPIE 6666, 666607 (2007).
[CrossRef]

The Institute of Space and Astronautical Science Report (1)

H. Kaneda, T. Onaka, and R. Yamashiro, “Development of SiC mirror for ASTRO-F,” The Institute of Space and Astronautical Science Report 14, 289–295 (2000).

Other (3)

R. Y. Paul, Opto-mechanical Systems Design, 3rd ed. (SPIE, 2006), pp. 111–112.

J. W. Bilbro, “Lightweight mirrors/optical materials,” in Encyclopedia of Modern Optics, R. D. Guenther, G. D. Steel, and L. Bayvel, eds. (Elsevier, 2005), pp. 460–466.

J. Breysse, D. Castel, B. Laviron, D. Logut, and M. Bougoin, “All-SiC telescope technology: recent progress and achievements,” in Proceedings of the 5th International Conference on Space Optics (ICSO 2004), B. Warmbein, ed. (ESA, 2004), pp. 659–671.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Prototype SiC mirror comprised of a mirror skin and a ribbed backside construction. Left, front side; Right, back side.

Fig. 2.
Fig. 2.

Drawing of a prototype mirror. Spherical mirror surface with an outer diameter of 160 mm and a focal distance of 454 mm.

Fig. 3.
Fig. 3.

Nineteen orthogonally projected segmented regions on the mirror surface used in this examination. The regions are regular hexagons with opposite side distances of 30 mm and an area of 780mm2 each.

Fig. 4.
Fig. 4.

Finite element model of the mirror body entirely comprised of solid elements with 218,900 nodes and 183,988 elements.

Fig. 5.
Fig. 5.

Specific regions used to examine the effect of the size of regions with different material properties. Those were placed concentrically inside the Region 9. Opposite side distances: (a) 15 mm, (b) 6 mm, and (c) 3 mm.

Fig. 6.
Fig. 6.

Boundary conditions set to the FE models. Necessary motion constraints were symmetrically given.

Fig. 7.
Fig. 7.

Example of the analysis result in the case where only one segmented region of the mirror surface had a different CTE from the other regions (left: the distribution of deviations from the original spherical surface; right: the distribution of deviations from the representation spherical surface). Base CTE: 2.4×106/K, CTE variation: 0.1%, opposite side distance: 30 mm (area: 780mm2), and temperature: 300100K.

Fig. 8.
Fig. 8.

Analysis result of deviations from the representation spherical surface obtained from various base CTEs. CTE variation: 1%, opposite side distance: 30 mm (area: 780mm2), and temperature: 300100K.

Fig. 9.
Fig. 9.

Analysis result of deviations from the representation spherical surface at various rates of CTE variation. Base CTE: 2.4×106/K, and temperature: 300100K.

Fig. 10.
Fig. 10.

Analysis result of deviations from the representation spherical surface at various areas of the specific region. Base CTE: 2.4×106/K, temperature: 300100K.

Fig. 11.
Fig. 11.

Analysis result of deviations from the representation spherical surface at various opposite side distances of the specific region. Base CTE: 2.4×106/K, temperature: 300100K.

Fig. 12.
Fig. 12.

Result of the cryogenic mirror accuracy testing of the actual mirror body. Temperature: 30095K, PV=526nm [16].

Fig. 13.
Fig. 13.

Contour figure obtained by the FEM analysis for reproducing the result of the cryogenic testing of the actual mirror body. CTE values inputted in the FE model were based on the result of the case study in Fig. 9.

Tables (1)

Tables Icon

Table 1. Base Values of the Material Properties used in the FEM Analysis [15]a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ri(a,b,c)=(xia)2(yib)2(zic)2,
J=i=1n(Rri(a,b,c))2.
D=a·106·r·(0.0002S20.007S+12)÷2.4=417000·a·r·(0.0002S20.007S+12),
D=a·106·r·(0.009d30.2d2+15d+8.4)÷2.4=417000·a·r·(0.009d30.2d2+15d+8.4).

Metrics