Abstract

We demonstrate that objects buried in sand (1 to 4 mm deep) may be selectively imaged according to their chemical composition through spectral analysis of the laser-induced breakdown signal. The signal is generated by loosely focused femtosecond laser pulses having energies ranging from 0.5 to 2.5 mJ. We determine the depth from which a spectral signal may be measured as a function of pulse energy. Having in mind applications to remote sensing, chemical-specific imaging of shallowly buried objects may find use in various fields ranging from space exploration to landmine detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Jol, Ground Penetrating Radar: Theory and Applications (Elsevier, 2009).
  2. C. S. Bristow and H. M. Jol, Ground Penetrating Radar in Sediments, Special Publications (Geological Society, 2003), Vol. 211.
  3. J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).
  4. F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012)
    [CrossRef]
  5. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), Part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010).
    [CrossRef]
  6. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).
  7. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  8. R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and remote cultural heritage ablative cleaning,” Opt. Lett. 30, 2882–2884 (2005).
    [CrossRef]
  9. S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).
  10. K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
    [CrossRef]
  11. P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
    [CrossRef]
  12. W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
    [CrossRef]
  13. L. M. Naveira, B. D. Strycker, J. Wang, G. O. Ariunbold, A. V. Sokolov, and G. W. Kattawar, “Propagation of femtosecond laser pulses through water in the linear absorption regime,” Appl. Opt. 48, 1828–1836 (2009).
    [CrossRef]
  14. K. Wang, B. D. Strycker, D. V. Voronine, P. K. Jha, M.O. Scully, R. E. Meyers, P. Hemmer, and A. V. Sokolov, “Remote sub-diffraction imaging with femtosecond laser filaments,” Opt. Lett. 37, 1343–1345 (2012).
    [CrossRef]
  15. R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
    [CrossRef]
  16. L. B. Stotts, “The radiance produced by laser radiation transversing a particulate multiple-scattering medium,” J. Opt. Soc. Am. 67, 815–819 (1977).
    [CrossRef]
  17. H. C. van de Hulst and G. W. Kattawar, “Exact spread function for a pulsed collimated beam in a medium with small-angle scattering,” Appl. Opt. 33, 5820–5829 (1994).
    [CrossRef]
  18. G. A. D’Almeida, “On the variability of desert aerosol radiative characteristics,” J. Geophys. Res. 92, D3, 3017–3026 (1987).
    [CrossRef]
  19. J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
    [CrossRef]
  20. A. Novitsky, C. W. Qui, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
    [CrossRef]
  21. T. G. Graff, R. V. Morris, S. M. Clegg, R. C. Wiens, and R. B. Anderson, “Dust removal on Mars using laser-induced breakdown spectroscopy,” 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, 7–11 Mar.2011, p. 1916.
  22. N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: using lasers to determine the chemistry of the red planet,” Opt. Photon. News 24, 1, 26–33 (2013).
    [CrossRef]

2013

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: using lasers to determine the chemistry of the red planet,” Opt. Photon. News 24, 1, 26–33 (2013).
[CrossRef]

2012

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012)
[CrossRef]

K. Wang, B. D. Strycker, D. V. Voronine, P. K. Jha, M.O. Scully, R. E. Meyers, P. Hemmer, and A. V. Sokolov, “Remote sub-diffraction imaging with femtosecond laser filaments,” Opt. Lett. 37, 1343–1345 (2012).
[CrossRef]

2011

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

A. Novitsky, C. W. Qui, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

2010

2009

2007

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

2006

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
[CrossRef]

2005

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

R. Grönlund, M. Lundqvist, and S. Svanberg, “Remote imaging laser-induced breakdown spectroscopy and remote cultural heritage ablative cleaning,” Opt. Lett. 30, 2882–2884 (2005).
[CrossRef]

2004

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

1994

1987

G. A. D’Almeida, “On the variability of desert aerosol radiative characteristics,” J. Geophys. Res. 92, D3, 3017–3026 (1987).
[CrossRef]

1977

Ackermann, R.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Altschuler, T.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Anabitarte, F.

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012)
[CrossRef]

Anderson, R. B.

T. G. Graff, R. V. Morris, S. M. Clegg, R. C. Wiens, and R. B. Anderson, “Dust removal on Mars using laser-induced breakdown spectroscopy,” 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, 7–11 Mar.2011, p. 1916.

Ariunbold, G. O.

Azarm, A.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Bristow, C. S.

C. S. Bristow and H. M. Jol, Ground Penetrating Radar in Sediments, Special Publications (Geological Society, 2003), Vol. 211.

Broach, T.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Carin, L.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Chan, C. T.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Chen, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Chin, S. L.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).

Clegg, S. M.

T. G. Graff, R. V. Morris, S. M. Clegg, R. C. Wiens, and R. B. Anderson, “Dust removal on Mars using laser-induced breakdown spectroscopy,” 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, 7–11 Mar.2011, p. 1916.

Cobo, A.

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012)
[CrossRef]

Cremers, D. A.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

D’Almeida, G. A.

G. A. D’Almeida, “On the variability of desert aerosol radiative characteristics,” J. Geophys. Res. 92, D3, 3017–3026 (1987).
[CrossRef]

Daigle, J.-F.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

DeLucia, F. C.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
[CrossRef]

Graff, T. G.

T. G. Graff, R. V. Morris, S. M. Clegg, R. C. Wiens, and R. B. Anderson, “Dust removal on Mars using laser-induced breakdown spectroscopy,” 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, 7–11 Mar.2011, p. 1916.

Grönlund, R.

Hahn, D. W.

Harmon, R.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Harmon, R. S.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
[CrossRef]

Hemmer, P.

Jha, P. K.

Jol, H. M.

C. S. Bristow and H. M. Jol, Ground Penetrating Radar in Sediments, Special Publications (Geological Society, 2003), Vol. 211.

H. M. Jol, Ground Penetrating Radar: Theory and Applications (Elsevier, 2009).

Kamali, Y.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Kasparian, J.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Kattawar, G. W.

LaPointe, A.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
[CrossRef]

Lin, Z.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Liu, W.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Lockwood, J. R.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Lopez-Higuera, J. M.

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012)
[CrossRef]

Lundqvist, M.

MacDonald, J.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Mathieu, P.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Maurice, S.

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: using lasers to determine the chemistry of the red planet,” Opt. Photon. News 24, 1, 26–33 (2013).
[CrossRef]

McFee, J.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Méjean, G.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Melikechi, N.

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: using lasers to determine the chemistry of the red planet,” Opt. Photon. News 24, 1, 26–33 (2013).
[CrossRef]

Meyers, R. E.

Miziolek, A. W.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
[CrossRef]

Morris, R. V.

T. G. Graff, R. V. Morris, S. M. Clegg, R. C. Wiens, and R. B. Anderson, “Dust removal on Mars using laser-induced breakdown spectroscopy,” 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, 7–11 Mar.2011, p. 1916.

Naveira, L. M.

Newsom, H.

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: using lasers to determine the chemistry of the red planet,” Opt. Photon. News 24, 1, 26–33 (2013).
[CrossRef]

Ng, J.

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Novitsky, A.

A. Novitsky, C. W. Qui, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

Omenetto, N.

Qui, C. W.

A. Novitsky, C. W. Qui, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rappaport, C.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Rohwetter, P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Roy, G.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Salmon, E.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Scott, W.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Scully, M.O.

Simard, P. T.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Singh, J. P.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

Sokolov, A. V.

Stelmaszczyk, K.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Stotts, L. B.

Strycker, B. D.

Svanberg, S.

Thakur, S. N.

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

van de Hulst, H. C.

Voronine, D. V.

Wang, H.

A. Novitsky, C. W. Qui, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

Wang, J.

Wang, K.

Weaver, R.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

Wiens, R.

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: using lasers to determine the chemistry of the red planet,” Opt. Photon. News 24, 1, 26–33 (2013).
[CrossRef]

Wiens, R. C.

T. G. Graff, R. V. Morris, S. M. Clegg, R. C. Wiens, and R. B. Anderson, “Dust removal on Mars using laser-induced breakdown spectroscopy,” 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, 7–11 Mar.2011, p. 1916.

Winkel, R. J.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
[CrossRef]

Wolf, J.-P.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Wöste, L.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Xu, H. L.

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Yu, J.

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Anal. Bioanal. Chem.

R. S. Harmon, F. C. DeLucia, A. LaPointe, R. J. Winkel, and A. W. Miziolek, “LIBS for landmine detection and discrimination,” Anal. Bioanal. Chem. 385, 1140–1148 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Stelmaszczyk, P. Rohwetter, G. Méjean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J.-P. Wolf, and L. Wöste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85, 3977–3979 (2004).
[CrossRef]

Appl. Spectrosc.

ISRN Spectrosc.

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectrosc. 2012, 1–12 (2012)
[CrossRef]

J. Geophys. Res.

G. A. D’Almeida, “On the variability of desert aerosol radiative characteristics,” J. Geophys. Res. 92, D3, 3017–3026 (1987).
[CrossRef]

J. Opt. Soc. Am.

Nat. Photonics

J. Chen, J. Ng, Z. Lin, and C. T. Chan, “Optical pulling force,” Nat. Photonics 5, 531–534 (2011).
[CrossRef]

Opt. Lett.

Opt. Photon. News

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: using lasers to determine the chemistry of the red planet,” Opt. Photon. News 24, 1, 26–33 (2013).
[CrossRef]

Phys. Rev. Lett.

A. Novitsky, C. W. Qui, and H. Wang, “Single gradientless light beam drags particles as tractor beams,” Phys. Rev. Lett. 107, 203601 (2011).
[CrossRef]

Spectrochim. Acta B

P. Rohwetter, K. Stelmaszczyk, L. Wöste, R. Ackermann, G. Méjean, E. Salmon, J. Kasparian, J. Yu, and J.-P. Wolf, “Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation,” Spectrochim. Acta B 60, 1025–1033 (2005).
[CrossRef]

W. Liu, H. L. Xu, G. Méjean, Y. Kamali, J.-F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, and S. L. Chin, “Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample,” Spectrochim. Acta B 62, 76–81 (2007).
[CrossRef]

Other

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

S. L. Chin, Femtosecond Laser Filamentation (Springer, 2010).

H. M. Jol, Ground Penetrating Radar: Theory and Applications (Elsevier, 2009).

C. S. Bristow and H. M. Jol, Ground Penetrating Radar in Sediments, Special Publications (Geological Society, 2003), Vol. 211.

J. MacDonald, J. R. Lockwood, J. McFee, T. Altschuler, T. Broach, L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Weaver, Alternatives for Landmine Detection (Rand, 2003).

T. G. Graff, R. V. Morris, S. M. Clegg, R. C. Wiens, and R. B. Anderson, “Dust removal on Mars using laser-induced breakdown spectroscopy,” 42nd Lunar and Planetary Science Conference, The Woodlands, Texas, 7–11 Mar.2011, p. 1916.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. The pump beam is directed downward and focused by a 1 m lens upon the sample. Upward-directed signal light is collected with a 10 cm lens and passed through a SWP filter before analysis with a spectrometer. For remote sensing applications, the light-collecting apparatus must be scaled appropriately and the beam instead of the sample must be scanned in two dimensions.

Fig. 2.
Fig. 2.

Retrieved spectra of sand (black), aluminum (blue), copper (green), and stainless steel (red) using the setup shown in Fig. 1. Each spectrum has been vertically displaced to aid visualization. The metallic samples have been buried beneath 2.0±0.3mm of sand.

Fig. 3.
Fig. 3.

(a) Circular stainless steel washer (center), copper bar (top), and aluminum bar (right). (b) The same metallic objects buried beneath 2.0±0.3mm of sand. (c) Composite RGB image of the buried objects with aluminum, copper, and stainless steel corresponding to the blue, green, and red color components, respectively.

Fig. 4.
Fig. 4.

Natural logarithm of the received signal intensity as a function of pulse energy and depth. The curve shows the relationship Eth=E0exp(cz).

Metrics