Abstract

This work describes the development of a dual-pump coherent anti-Stokes Raman spectroscopy system for simultaneous measurements of the temperature and the absolute mole fraction of N2, O2, and H2 in supersonic combusting flows. Changes to the experimental setup and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperatures above 800 K, errors in the absolute mole fraction are within 1.5%, 0.5%, and 1% of the total composition for N2, O2, and H2, respectively. Standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5% and 1.7% of the total composition for O2, and between 1.5% and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Anderson and A. C. Eckbreth, “Simultaneous coherent anti-Stokes Raman spectroscopy measurements in hydrogen fueled supersonic combustion,” J. Propul. Power 8, 7–15 (1992).
    [CrossRef]
  2. S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
    [CrossRef]
  3. A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
    [CrossRef]
  4. S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).
  5. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Combustion Science and Technology Book Series (Taylor & Francis, 1996).
  6. R. P. Lucht, “Three-laser coherent anti-Stokes Raman scattering measurements of two species,” Opt. Lett. 12, 78–80 (1987).
    [CrossRef]
  7. S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007).
    [CrossRef]
  8. G. Magnotti, A. D. Cutler, and P. M. Danehy, “Beam shaping for CARS measurements in turbulent environments,” Appl. Opt. 51, 4730–4741 (2012).
    [CrossRef]
  9. G. Magnotti and A. D. Cutler, “Dual-pump CARS development and application to supersonic combustion,” CR-2012-217569 (NASA, 2012).
  10. G. Magnotti, A. D. Cutler, and P. M. Danehy, “Development of a dual-pump CARS system for measurements in a supersonic combusting free jet,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, AIAA-2012-1193.
  11. S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustor-heated Mach 1.6 jet,” presented at the 47th Aerospace Sciences Meeting, Orlando, FL, 2009, AIAA-2009-0524.
  12. G. Magnotti, “Development of a dual pump CARS system for measurements in a supersonic combusting free jet,” The George Washington University, MAE Department, 2012.
  13. A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).
  14. A. D. Cutler, G. Magnotti, L. Cantu, and E. Gallo, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘C’,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2013).
  15. G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
    [CrossRef]
  16. A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
    [CrossRef]
  17. D. Bivolaru and G. C. Herring, “Focal plane imaging of crossed beams in non-linear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
    [CrossRef]
  18. E. H. van Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005).
    [CrossRef]
  19. A. D. Cutler and G. Magnotti, “CARS spectral fitting with multiple resonant species using sparse libraries,” J. Raman Spectrosc. 42, 1949–1957 (2011).
    [CrossRef]
  20. R. E. Palmer, “The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information,” SANDIA National Labs, Livermore, CA, 1989.
  21. R. D. Hancock, F. R. Schauer, R. P. Lucht, and R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
    [CrossRef]
  22. P. M. Danehy, S. O’Byrne, and A. D. Cutler, “Coherent anti-Stokes Raman scattering (CARS) as a probe for supersonic hydrogen-fuel/air mixing,” in Proceedings of the JANNAF APS/CS/PSHS/MSS Joint MeetingColorado Springs, Colorado (December2003).
  23. R. H. Tipping and J. P. Bouanich, “On the use of Herman–Wallis factors for diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 71, 99–103 (2001).
    [CrossRef]
  24. T. James, “Line intensities in the Raman effect of 1Σ diatomic molecules,” J. Chem. Phys. 31, 130 (1959).
    [CrossRef]
  25. M. Marrocco, G. Magnotti, and A. D. Cutler, “Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species,” J. Raman Spectrosc. 43, 595–598 (2012).
    [CrossRef]
  26. R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
    [CrossRef]
  27. S. A. Tedder, D. Bivolaru, and P. M. Danehy, “Characterization of a Combined CARS and Interferometric Rayleigh Scattering System,” presented at the 45th AIAA Aerospace Science Meeting, Reno, 2007, AIAA 2007-871.
  28. T. Lundeen, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301–6305 (1983).
    [CrossRef]
  29. R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2 CARS spectra,” Opt. Commun. 40, 417–420 (1982).
    [CrossRef]
  30. J. Kojima and Q.-V. Nguyen, “Quantitative analysis of spectral interference of spontaneous Raman scattering in high-pressure fuel-rich H2-air combustion,” J. Quant. Spectrosc. Radiat. Transfer 94, 439–466 (2005).
    [CrossRef]
  31. P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
    [CrossRef]
  32. W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
    [CrossRef]
  33. P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
    [CrossRef]
  34. S. La and L. E. Harris, “Relative value of the third-order nonresonant susceptibility of water,” Appl. Opt. 25, 4501–4503 (1986).
    [CrossRef]
  35. G. J. Rosasco and W. S. Hurst, “Dispersion of the electronic contribution to the third-order nonlinear susceptibility of H2,” J. Opt. Soc. Am. B 3, 1251–1256 (1986).
    [CrossRef]
  36. R. L. Farrow, R. P. Lucht, and L. A. Rahn, “Measurements of the nonresonant third-order susceptibilities of gases using coherent anti-Stokes Raman spectroscopy,” J. Opt. Soc. Am. B 4, 1241–1246 (1987).
    [CrossRef]
  37. D. P. Shelton and J. E. Rice, “Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase,” Chem. Rev. 94, 3–29 (1994).
    [CrossRef]
  38. J. W. Hahn and E. S. Lee, “Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,” J. Opt. Soc. Am. B 12, 1021–1027 (1995).
    [CrossRef]
  39. G. Hauchecorne, F. Kerherve, and G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J. Phys. 32, 47–62 (1971).
    [CrossRef]
  40. M. Pealat, P. Bouchardy, M. Lefebvre, and J. P. Taran, “Precision of multiplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985).
    [CrossRef]
  41. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, and T. Parameswaran, “Precision of multiplex CARS temperatures using both single-mode and multimode pump lasers,” Appl. Opt. 26, 99–110 (1987).
    [CrossRef]
  42. S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
    [CrossRef]
  43. S. Prucker, W. Meier, and W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
    [CrossRef]
  44. T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef]
  45. J. P. Kuehner, M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “High-resolution broadband N2 coherent anti-Stokes Raman spectroscopy: comparison of measurements for conventional and modeless broadband dye lasers,” Appl. Opt. 42, 6757–6767 (2003).
    [CrossRef]
  46. G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006).
    [CrossRef]
  47. J. W. Hahn, C. W. Park, and S. N. Park, “Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 36, 6722–6728 (1997).
    [CrossRef]
  48. K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

2012 (3)

G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
[CrossRef]

M. Marrocco, G. Magnotti, and A. D. Cutler, “Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species,” J. Raman Spectrosc. 43, 595–598 (2012).
[CrossRef]

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Beam shaping for CARS measurements in turbulent environments,” Appl. Opt. 51, 4730–4741 (2012).
[CrossRef]

2011 (1)

A. D. Cutler and G. Magnotti, “CARS spectral fitting with multiple resonant species using sparse libraries,” J. Raman Spectrosc. 42, 1949–1957 (2011).
[CrossRef]

2010 (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).

2007 (2)

D. Bivolaru and G. C. Herring, “Focal plane imaging of crossed beams in non-linear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef]

S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007).
[CrossRef]

2006 (1)

G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006).
[CrossRef]

2005 (2)

J. Kojima and Q.-V. Nguyen, “Quantitative analysis of spectral interference of spontaneous Raman scattering in high-pressure fuel-rich H2-air combustion,” J. Quant. Spectrosc. Radiat. Transfer 94, 439–466 (2005).
[CrossRef]

E. H. van Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005).
[CrossRef]

2003 (2)

J. P. Kuehner, M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “High-resolution broadband N2 coherent anti-Stokes Raman spectroscopy: comparison of measurements for conventional and modeless broadband dye lasers,” Appl. Opt. 42, 6757–6767 (2003).
[CrossRef]

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

2001 (1)

R. H. Tipping and J. P. Bouanich, “On the use of Herman–Wallis factors for diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 71, 99–103 (2001).
[CrossRef]

1999 (1)

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

1997 (3)

1996 (1)

1995 (1)

1994 (2)

S. Prucker, W. Meier, and W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

D. P. Shelton and J. E. Rice, “Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase,” Chem. Rev. 94, 3–29 (1994).
[CrossRef]

1993 (1)

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

1992 (1)

T. J. Anderson and A. C. Eckbreth, “Simultaneous coherent anti-Stokes Raman spectroscopy measurements in hydrogen fueled supersonic combustion,” J. Propul. Power 8, 7–15 (1992).
[CrossRef]

1989 (1)

S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

1987 (3)

1986 (3)

1985 (1)

1984 (1)

1983 (1)

T. Lundeen, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301–6305 (1983).
[CrossRef]

1982 (1)

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2 CARS spectra,” Opt. Commun. 40, 417–420 (1982).
[CrossRef]

1978 (1)

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

1971 (1)

G. Hauchecorne, F. Kerherve, and G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J. Phys. 32, 47–62 (1971).
[CrossRef]

1959 (1)

T. James, “Line intensities in the Raman effect of 1Σ diatomic molecules,” J. Chem. Phys. 31, 130 (1959).
[CrossRef]

Aldén, M.

S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Anderson, T. J.

T. J. Anderson and A. C. Eckbreth, “Simultaneous coherent anti-Stokes Raman spectroscopy measurements in hydrogen fueled supersonic combustion,” J. Propul. Power 8, 7–15 (1992).
[CrossRef]

Bengtsson, P. E.

S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Berman, R.

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Bertagnolli, K. E.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

Bischel, W. K.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
[CrossRef]

Bivolaru, D.

D. Bivolaru and G. C. Herring, “Focal plane imaging of crossed beams in non-linear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef]

S. A. Tedder, D. Bivolaru, and P. M. Danehy, “Characterization of a Combined CARS and Interferometric Rayleigh Scattering System,” presented at the 45th AIAA Aerospace Science Meeting, Reno, 2007, AIAA 2007-871.

Bouanich, J. P.

R. H. Tipping and J. P. Bouanich, “On the use of Herman–Wallis factors for diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 71, 99–103 (2001).
[CrossRef]

Bouchardy, P.

Bultitude, K. M.

K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

Cantu, L.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

A. D. Cutler, G. Magnotti, L. Cantu, and E. Gallo, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘C’,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2013).

Capriotti, D. P.

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

Cutler, A. D.

M. Marrocco, G. Magnotti, and A. D. Cutler, “Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species,” J. Raman Spectrosc. 43, 595–598 (2012).
[CrossRef]

G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
[CrossRef]

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Beam shaping for CARS measurements in turbulent environments,” Appl. Opt. 51, 4730–4741 (2012).
[CrossRef]

A. D. Cutler and G. Magnotti, “CARS spectral fitting with multiple resonant species using sparse libraries,” J. Raman Spectrosc. 42, 1949–1957 (2011).
[CrossRef]

S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007).
[CrossRef]

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Development of a dual-pump CARS system for measurements in a supersonic combusting free jet,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, AIAA-2012-1193.

A. D. Cutler, G. Magnotti, L. Cantu, and E. Gallo, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘C’,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2013).

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustor-heated Mach 1.6 jet,” presented at the 47th Aerospace Sciences Meeting, Orlando, FL, 2009, AIAA-2009-0524.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

G. Magnotti and A. D. Cutler, “Dual-pump CARS development and application to supersonic combustion,” CR-2012-217569 (NASA, 2012).

P. M. Danehy, S. O’Byrne, and A. D. Cutler, “Coherent anti-Stokes Raman scattering (CARS) as a probe for supersonic hydrogen-fuel/air mixing,” in Proceedings of the JANNAF APS/CS/PSHS/MSS Joint MeetingColorado Springs, Colorado (December2003).

Danehy, P. M.

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Beam shaping for CARS measurements in turbulent environments,” Appl. Opt. 51, 4730–4741 (2012).
[CrossRef]

G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
[CrossRef]

S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007).
[CrossRef]

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Development of a dual-pump CARS system for measurements in a supersonic combusting free jet,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, AIAA-2012-1193.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustor-heated Mach 1.6 jet,” presented at the 47th Aerospace Sciences Meeting, Orlando, FL, 2009, AIAA-2009-0524.

S. A. Tedder, D. Bivolaru, and P. M. Danehy, “Characterization of a Combined CARS and Interferometric Rayleigh Scattering System,” presented at the 45th AIAA Aerospace Science Meeting, Reno, 2007, AIAA 2007-871.

P. M. Danehy, S. O’Byrne, and A. D. Cutler, “Coherent anti-Stokes Raman scattering (CARS) as a probe for supersonic hydrogen-fuel/air mixing,” in Proceedings of the JANNAF APS/CS/PSHS/MSS Joint MeetingColorado Springs, Colorado (December2003).

K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

DeLoach, R.

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

Drummond, J. R.

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Duggan, P.

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Dutton, J. C.

Dyer, M. J.

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
[CrossRef]

Eckbreth, A. C.

T. J. Anderson and A. C. Eckbreth, “Simultaneous coherent anti-Stokes Raman spectroscopy measurements in hydrogen fueled supersonic combustion,” J. Propul. Power 8, 7–15 (1992).
[CrossRef]

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Combustion Science and Technology Book Series (Taylor & Francis, 1996).

Farrow, R. L.

Forsman, J. W.

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Fox, J. S.

K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

Fraval, E.

K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

Gallo, E.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

A. D. Cutler, G. Magnotti, L. Cantu, and E. Gallo, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘C’,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2013).

Gord, J. R.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).

Goyne, C. P.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

Greenhalgh, D. A.

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2 CARS spectra,” Opt. Commun. 40, 417–420 (1982).
[CrossRef]

Hahn, J. W.

Hall, R. J.

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2 CARS spectra,” Opt. Commun. 40, 417–420 (1982).
[CrossRef]

Hancock, R. D.

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

R. D. Hancock, F. R. Schauer, R. P. Lucht, and R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef]

Hanson, R. K.

Harris, L. E.

Hartung, G.

G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006).
[CrossRef]

Hauchecorne, G.

G. Hauchecorne, F. Kerherve, and G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J. Phys. 32, 47–62 (1971).
[CrossRef]

Herring, G. C.

G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
[CrossRef]

D. Bivolaru and G. C. Herring, “Focal plane imaging of crossed beams in non-linear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef]

Hou, S.-Y.

T. Lundeen, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301–6305 (1983).
[CrossRef]

Houwing, A. F. P.

K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

Hult, J. F.

G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006).
[CrossRef]

Hurst, W. S.

James, T.

T. James, “Line intensities in the Raman effect of 1Σ diatomic molecules,” J. Chem. Phys. 31, 130 (1959).
[CrossRef]

Kaminski, C. F.

G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006).
[CrossRef]

Kerherve, F.

G. Hauchecorne, F. Kerherve, and G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J. Phys. 32, 47–62 (1971).
[CrossRef]

Kojima, J.

J. Kojima and Q.-V. Nguyen, “Quantitative analysis of spectral interference of spontaneous Raman scattering in high-pressure fuel-rich H2-air combustion,” J. Quant. Spectrosc. Radiat. Transfer 94, 439–466 (2005).
[CrossRef]

Kröll, S.

S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Kuehner, J. P.

La, S.

Le Flohic, M. P.

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Lee, E. S.

Lefebvre, M.

Leipertz, A.

Löfström, C.

S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Lucht, R. P.

Lundeen, T.

T. Lundeen, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301–6305 (1983).
[CrossRef]

Magnotti, G.

M. Marrocco, G. Magnotti, and A. D. Cutler, “Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species,” J. Raman Spectrosc. 43, 595–598 (2012).
[CrossRef]

G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
[CrossRef]

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Beam shaping for CARS measurements in turbulent environments,” Appl. Opt. 51, 4730–4741 (2012).
[CrossRef]

A. D. Cutler and G. Magnotti, “CARS spectral fitting with multiple resonant species using sparse libraries,” J. Raman Spectrosc. 42, 1949–1957 (2011).
[CrossRef]

G. Magnotti, “Development of a dual pump CARS system for measurements in a supersonic combusting free jet,” The George Washington University, MAE Department, 2012.

G. Magnotti and A. D. Cutler, “Dual-pump CARS development and application to supersonic combustion,” CR-2012-217569 (NASA, 2012).

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustor-heated Mach 1.6 jet,” presented at the 47th Aerospace Sciences Meeting, Orlando, FL, 2009, AIAA-2009-0524.

A. D. Cutler, G. Magnotti, L. Cantu, and E. Gallo, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘C’,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2013).

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Development of a dual-pump CARS system for measurements in a supersonic combusting free jet,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, AIAA-2012-1193.

Marrocco, M.

M. Marrocco, G. Magnotti, and A. D. Cutler, “Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species,” J. Raman Spectrosc. 43, 595–598 (2012).
[CrossRef]

May, A. D.

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Mayer, G.

G. Hauchecorne, F. Kerherve, and G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J. Phys. 32, 47–62 (1971).
[CrossRef]

McDaniel, J. C.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

Meier, W.

S. Prucker, W. Meier, and W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Nguyen, Q.-V.

J. Kojima and Q.-V. Nguyen, “Quantitative analysis of spectral interference of spontaneous Raman scattering in high-pressure fuel-rich H2-air combustion,” J. Quant. Spectrosc. Radiat. Transfer 94, 439–466 (2005).
[CrossRef]

Nibler, J. W.

T. Lundeen, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301–6305 (1983).
[CrossRef]

O’Byrne, S.

S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007).
[CrossRef]

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

P. M. Danehy, S. O’Byrne, and A. D. Cutler, “Coherent anti-Stokes Raman scattering (CARS) as a probe for supersonic hydrogen-fuel/air mixing,” in Proceedings of the JANNAF APS/CS/PSHS/MSS Joint MeetingColorado Springs, Colorado (December2003).

Palmer, R. E.

R. E. Palmer, “The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information,” SANDIA National Labs, Livermore, CA, 1989.

Parameswaran, T.

Park, C. W.

Park, S. N.

Patnaik, A. K.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).

Pealat, M.

Prucker, S.

S. Prucker, W. Meier, and W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Rahn, L. A.

Rice, J. E.

D. P. Shelton and J. E. Rice, “Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase,” Chem. Rev. 94, 3–29 (1994).
[CrossRef]

Rockwell, R. D.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

Roekaerts, D.

Rosasco, G. J.

Roy, S.

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).

Sawchuk, R. A.

Schauer, F. R.

Seeger, T.

Shelton, D. P.

D. P. Shelton and J. E. Rice, “Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase,” Chem. Rev. 94, 3–29 (1994).
[CrossRef]

Sinclair, P. M.

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Smallwood, G. J.

Snelling, D. R.

Springer, R. R.

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

Stricker, W.

S. Prucker, W. Meier, and W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Sung, C. J.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

Taran, J. P.

Tedder, S. A.

G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
[CrossRef]

S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007).
[CrossRef]

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustor-heated Mach 1.6 jet,” presented at the 47th Aerospace Sciences Meeting, Orlando, FL, 2009, AIAA-2009-0524.

S. A. Tedder, D. Bivolaru, and P. M. Danehy, “Characterization of a Combined CARS and Interferometric Rayleigh Scattering System,” presented at the 45th AIAA Aerospace Science Meeting, Reno, 2007, AIAA 2007-871.

Tipping, R. H.

R. H. Tipping and J. P. Bouanich, “On the use of Herman–Wallis factors for diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 71, 99–103 (2001).
[CrossRef]

van Veen, E. H.

Varghese, P. L.

Walewski, J. W.

G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006).
[CrossRef]

Woodmansee, M. A.

Yang, S. R.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

Yu, G.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

Zhao, J. R.

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

AIAA J. (2)

S. O’Byrne, P. M. Danehy, S. A. Tedder, and A. D. Cutler, “Dual pump coherent anti-Stokes Raman scattering measurements in supersonic combustor,” AIAA J. 45, 922–933 (2007).
[CrossRef]

A. D. Cutler, P. M. Danehy, R. R. Springer, S. O’Byrne, D. P. Capriotti, and R. DeLoach, “Coherent anti-Stokes Raman spectroscopic termomethry in a supersonic combustor,” AIAA J. 41, 2451–2459 (2003).
[CrossRef]

Appl. Opt. (10)

P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral line shapes measured at high resolution,” Appl. Opt. 23, 2376–2385 (1984).
[CrossRef]

M. Pealat, P. Bouchardy, M. Lefebvre, and J. P. Taran, “Precision of multiplex CARS temperature measurements,” Appl. Opt. 24, 1012–1022 (1985).
[CrossRef]

S. La and L. E. Harris, “Relative value of the third-order nonresonant susceptibility of water,” Appl. Opt. 25, 4501–4503 (1986).
[CrossRef]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, and T. Parameswaran, “Precision of multiplex CARS temperatures using both single-mode and multimode pump lasers,” Appl. Opt. 26, 99–110 (1987).
[CrossRef]

J. W. Hahn, C. W. Park, and S. N. Park, “Broadband coherent anti-Stokes Raman spectroscopy with a modeless dye laser,” Appl. Opt. 36, 6722–6728 (1997).
[CrossRef]

T. Seeger and A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef]

R. D. Hancock, F. R. Schauer, R. P. Lucht, and R. L. Farrow, “Dual-pump coherent anti-Stokes Raman scattering measurements of nitrogen and oxygen in a laminar jet diffusion flame,” Appl. Opt. 36, 3217–3226 (1997).
[CrossRef]

J. P. Kuehner, M. A. Woodmansee, R. P. Lucht, and J. C. Dutton, “High-resolution broadband N2 coherent anti-Stokes Raman spectroscopy: comparison of measurements for conventional and modeless broadband dye lasers,” Appl. Opt. 42, 6757–6767 (2003).
[CrossRef]

E. H. van Veen and D. Roekaerts, “Thermometry for turbulent flames by coherent anti-Stokes Raman spectroscopy with simultaneous referencing to the modeless excitation profile,” Appl. Opt. 44, 6995–7004 (2005).
[CrossRef]

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Beam shaping for CARS measurements in turbulent environments,” Appl. Opt. 51, 4730–4741 (2012).
[CrossRef]

Appl. Phys. B (2)

S. R. Yang, J. R. Zhao, C. J. Sung, and G. Yu, “Multiplex CARS measurements in supersonic H2/air combustion,” Appl. Phys. B 68, 257–265 (1999).
[CrossRef]

S. Kröll, M. Aldén, P. E. Bengtsson, and C. Löfström, “An evaluation of precision and systematic errors in vibrational CARS thermometry,” Appl. Phys. B 49, 445–453 (1989).
[CrossRef]

Appl. Phys. Lett. (1)

A. C. Eckbreth, “BOXCARS: crossed-beam phase-matched CARS generation in gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

Chem. Rev. (1)

D. P. Shelton and J. E. Rice, “Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase,” Chem. Rev. 94, 3–29 (1994).
[CrossRef]

Combust. Flame (1)

R. D. Hancock, K. E. Bertagnolli, and R. P. Lucht, “Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner,” Combust. Flame 109, 323–331 (1997).
[CrossRef]

J. Chem. Phys. (2)

T. James, “Line intensities in the Raman effect of 1Σ diatomic molecules,” J. Chem. Phys. 31, 130 (1959).
[CrossRef]

T. Lundeen, S.-Y. Hou, and J. W. Nibler, “Nonresonant third order susceptibilities for various gases,” J. Chem. Phys. 79, 6301–6305 (1983).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. (1)

G. Hauchecorne, F. Kerherve, and G. Mayer, “Mesure des interactions entre ondes lumineuses dans diverses substances,” J. Phys. 32, 47–62 (1971).
[CrossRef]

J. Propul. Power (1)

T. J. Anderson and A. C. Eckbreth, “Simultaneous coherent anti-Stokes Raman spectroscopy measurements in hydrogen fueled supersonic combustion,” J. Propul. Power 8, 7–15 (1992).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

R. H. Tipping and J. P. Bouanich, “On the use of Herman–Wallis factors for diatomic molecules,” J. Quant. Spectrosc. Radiat. Transfer 71, 99–103 (2001).
[CrossRef]

J. Kojima and Q.-V. Nguyen, “Quantitative analysis of spectral interference of spontaneous Raman scattering in high-pressure fuel-rich H2-air combustion,” J. Quant. Spectrosc. Radiat. Transfer 94, 439–466 (2005).
[CrossRef]

J. Raman Spectrosc. (3)

M. Marrocco, G. Magnotti, and A. D. Cutler, “Herman-Wallis corrections in dual-pump CARS intensities for combustion temperature and species,” J. Raman Spectrosc. 43, 595–598 (2012).
[CrossRef]

A. D. Cutler and G. Magnotti, “CARS spectral fitting with multiple resonant species using sparse libraries,” J. Raman Spectrosc. 42, 1949–1957 (2011).
[CrossRef]

G. Magnotti, A. D. Cutler, G. C. Herring, S. A. Tedder, and P. M. Danehy, “Saturation and Stark broadening effects in dual-pump CARS of N2, O2 and H2,” J. Raman Spectrosc. 43, 611–620 (2012).
[CrossRef]

Meas. Sci. Technol. (1)

G. Hartung, J. W. Walewski, J. F. Hult, and C. F. Kaminski, “A flat flame burner for the calibration of laser thermometry techniques,” Meas. Sci. Technol. 17, 2485–2493 (2006).
[CrossRef]

Opt. Commun. (1)

R. J. Hall and D. A. Greenhalgh, “Application of the rotational diffusion model to gaseous N2 CARS spectra,” Opt. Commun. 40, 417–420 (1982).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

W. K. Bischel and M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A 33, 3113 (1986).
[CrossRef]

P. Duggan, P. M. Sinclair, M. P. Le Flohic, J. W. Forsman, R. Berman, A. D. May, and J. R. Drummond, “Testing the validity of the optical diffusion coefficient: line-shape measurements of CO perturbed by N2,” Phys. Rev. A 48, 2077 (1993).
[CrossRef]

Prog. Energy Combust. Sci. (1)

S. Roy, J. R. Gord, and A. K. Patnaik, “Recent advances in coherent anti-Stokes Raman scattering spectroscopy: fundamental developments and applications in reacting flows,” Prog. Energy Combust. Sci. 36, 280–306 (2010).

Rev. Sci. Instrum. (2)

D. Bivolaru and G. C. Herring, “Focal plane imaging of crossed beams in non-linear optics experiments,” Rev. Sci. Instrum. 78, 056102 (2007).
[CrossRef]

S. Prucker, W. Meier, and W. Stricker, “A flat flame burner as calibration source for combustion research: temperatures and species concentrations of premixed H2/air flames,” Rev. Sci. Instrum. 65, 2908–2911 (1994).
[CrossRef]

Other (11)

K. M. Bultitude, P. M. Danehy, E. Fraval, J. S. Fox, and A. F. P. Houwing, “Broadband coherent anti-Stokes Raman spectroscopy (BB-CARS) in flames and hypersonic flows,” presented at the 2nd Australian Conference on Laser Diagnostics in Fluid Mechanics and Combustion, Monash University, Melbourne Australia, 1999.

S. A. Tedder, D. Bivolaru, and P. M. Danehy, “Characterization of a Combined CARS and Interferometric Rayleigh Scattering System,” presented at the 45th AIAA Aerospace Science Meeting, Reno, 2007, AIAA 2007-871.

G. Magnotti and A. D. Cutler, “Dual-pump CARS development and application to supersonic combustion,” CR-2012-217569 (NASA, 2012).

G. Magnotti, A. D. Cutler, and P. M. Danehy, “Development of a dual-pump CARS system for measurements in a supersonic combusting free jet,” presented at the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, 2012, AIAA-2012-1193.

S. A. Tedder, P. M. Danehy, G. Magnotti, and A. D. Cutler, “CARS temperature measurements in a combustor-heated Mach 1.6 jet,” presented at the 47th Aerospace Sciences Meeting, Orlando, FL, 2009, AIAA-2009-0524.

G. Magnotti, “Development of a dual pump CARS system for measurements in a supersonic combusting free jet,” The George Washington University, MAE Department, 2012.

A. D. Cutler, G. Magnotti, L. Cantu, E. Gallo, P. M. Danehy, R. D. Rockwell, C. P. Goyne, and J. C. McDaniel, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘A’,” in 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2012).

A. D. Cutler, G. Magnotti, L. Cantu, and E. Gallo, “Dual-pump CARS measurements in the University of Virginia’s dual-mode scramjet: configuration ‘C’,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (AIAA, 2013).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Combustion Science and Technology Book Series (Taylor & Francis, 1996).

R. E. Palmer, “The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information,” SANDIA National Labs, Livermore, CA, 1989.

P. M. Danehy, S. O’Byrne, and A. D. Cutler, “Coherent anti-Stokes Raman scattering (CARS) as a probe for supersonic hydrogen-fuel/air mixing,” in Proceedings of the JANNAF APS/CS/PSHS/MSS Joint MeetingColorado Springs, Colorado (December2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Experimental spectrum and theoretical fit (a) before and (b) after shifting the excitation profile.

Fig. 2.
Fig. 2.

Temperature contour plot in the vertical plane (y=0) for a Hencken burner flame with equivalence ratios (a) Φ=0.3 and (b) Φ=2.

Fig. 3.
Fig. 3.

Temperature contour plot in the horizontal plane (z=40mm) for a Hencken burner flame with equivalence ratios (a) Φ=0.3 and (b) Φ=2.

Fig. 4.
Fig. 4.

Measured (red circles) and computed (continuous black line) temperature as a function of the equivalence ratio Φ. Dashed lines are calculations for the two limiting cases bounding the inaccuracies due to mass flow meters.

Fig. 5.
Fig. 5.

O2/N2 ratio as a function of the equivalence ratio Φ in a Hencken burner flame.

Fig. 6.
Fig. 6.

Fit of an average of 500 single-shot spectra collected in ambient air to a theoretical spectrum computed using the Voigt model.

Fig. 7.
Fig. 7.

Measured (symbols) and computed (continuous line) mole fraction as a function of the equivalence ratio Φ in a Hencken burner flame.

Fig. 8.
Fig. 8.

Temperature standard deviation as a function of the measured average temperature in a Hencken burner flame. Open symbols are for fuel rich mixtures.

Fig. 9.
Fig. 9.

Mole fraction standard deviation as a function of the equivalence ratio Φ.

Fig. 10.
Fig. 10.

Measured (symbols) and predicted (continuous line) CARS signal peak intensity in camera counts as a function of the temperature. The right axis provides the detector saturation threshold as a percentage of the expected CARS signal at each temperature.

Fig. 11.
Fig. 11.

CARS spectra in a Hencken burner flame for Φ=0.2, acquired (blue line), and numerically saturated (red line).

Fig. 12.
Fig. 12.

Error in (a) temperature, (b) N2, (c) O2, and (d) H2 as a function of the temperature and of the ratio between the detector saturation threshold and the CARS signal intensity (α).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β=kTmDo,
ICARST3.5.

Metrics