Abstract

Resonator micro-optic gyro (RMOG) is a promising candidate for the next generation inertial rotation sensor based on the Sagnac effect. A current modulation technique used in an external cavity laser diode is proposed to construct the gyroscope system for the first time. The resonance curves before and after eliminating accompanying amplitude modulation are theoretically analyzed, calculated, and simulated; the demodulation curves with different modulation currents are formulated theoretically; and the optimum modulation current corresponding to the maximum sensitivity is obtained. The experiment results from the established RMOG experimental setup demonstrate that a bias stability of 2.7deg/s (10 s integrated time) over 600 s, and dynamic range of ±500deg/s are demonstrated in an RMOG with a silica optical waveguide ring resonator having a ring length of 12.8 cm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).
  2. A. W. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” in Proceedings of the 1990 National Technical Meeting of the Institute of Navigation (ION, 1990), pp. 161–166.
  3. N. Barbour and S. George, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
    [CrossRef]
  4. Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
    [CrossRef]
  5. K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984).
    [CrossRef]
  6. G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).
  7. R. E. Meyer, S. Ezekiel, and D. W. Stowe, “Passive fiber-optic ring resonator for rotation sensing,” Opt. Lett. 8, 644–646 (1983).
    [CrossRef]
  8. F. Zarinetchi, and S. Ezekiel, “Observation of lock-in behavior in a passive resonator gyroscope,” Opt. Lett. 11, 401–403 (1986).
    [CrossRef]
  9. X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).
    [CrossRef]
  10. L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
    [CrossRef]
  11. Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
    [CrossRef]
  12. Z. Zang, K. Mukai, and P. Navaretti, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
    [CrossRef]
  13. Z. Zang, K. Mukai, and P. Navaretti, “High power and stable high coupling efficiency superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
    [CrossRef]
  14. M. Lei, L. Feng, and Y. Zhi, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
    [CrossRef]
  15. X. Y. Ma, F. Y. Lim, and M. Zhang, “Experimental study of polarization maintaining fiber ring resonator in resonator fiber optic gyroscope,” Proc. SPIE 3555, 363–367 (1998).
    [CrossRef]
  16. M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
    [CrossRef]
  17. G. A. Sanders, N. Demma, and G. F. Rouse, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.
  18. T. Imai, K. Nishide, and H. Ochi, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” Proc. SPIE 1585, 153–155 (1991).
    [CrossRef]
  19. Z. Jin, X. Yu, and H. Ma, “Resonator fiber optic gyro employing a semiconductor laser,” Appl. Opt. 51, 2856–2864 (2012).
    [CrossRef]
  20. T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18, 626–665 (1982).
    [CrossRef]
  21. J. H. Comtois, M. A. Michalicek, and C. C. Barron, “Fabricating micro-instruments in surface-micromachined polycrystalline silicon,” in Proceedings of the 43rd International Instrumentation Symposium (Instrumentation Systems, 1997), pp. 169–179.
  22. K. Hotate, M. Enyama, and S. J. Yamashita, “High density multiplexing technique of fiber Bragg grating sensors by synthesis of optical coherence function,” in Proceedings of the 41st SICE Annual Conference (IEEE, 2002), pp. 2961–2966.
  23. Y. Ren, Z. Jin, and Y. Chen, “Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. 12, 942–950 (2011).
    [CrossRef]
  24. H. Ma, X. Zhang, and Z. Jin, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
    [CrossRef]
  25. H. Yu, C. Zhang, and L. Feng, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
    [CrossRef]
  26. X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
    [CrossRef]
  27. RIO Inc. datasheet, “Low phase noise, narrow linewidth source for fiber optic sensing applications.”
  28. K. Hotate, K. Takiguhi, and A. Hirose, “Adjusting-free method to eliminate the noise induced by the backscattering in an optical passive resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
    [CrossRef]
  29. K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35, 1076–1077 (1999).
    [CrossRef]
  30. H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643(2011).
    [CrossRef]

2012 (3)

Z. Zang, K. Mukai, and P. Navaretti, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

M. Lei, L. Feng, and Y. Zhi, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[CrossRef]

Z. Jin, X. Yu, and H. Ma, “Resonator fiber optic gyro employing a semiconductor laser,” Appl. Opt. 51, 2856–2864 (2012).
[CrossRef]

2011 (6)

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643(2011).
[CrossRef]

Z. Zang, K. Mukai, and P. Navaretti, “High power and stable high coupling efficiency superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Y. Ren, Z. Jin, and Y. Chen, “Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. 12, 942–950 (2011).
[CrossRef]

H. Yu, C. Zhang, and L. Feng, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

2010 (2)

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

2008 (1)

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

2006 (1)

H. Ma, X. Zhang, and Z. Jin, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

2001 (1)

N. Barbour and S. George, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

1999 (1)

K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35, 1076–1077 (1999).
[CrossRef]

1998 (2)

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).

X. Y. Ma, F. Y. Lim, and M. Zhang, “Experimental study of polarization maintaining fiber ring resonator in resonator fiber optic gyroscope,” Proc. SPIE 3555, 363–367 (1998).
[CrossRef]

1992 (1)

G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).

1991 (1)

T. Imai, K. Nishide, and H. Ochi, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” Proc. SPIE 1585, 153–155 (1991).
[CrossRef]

1990 (2)

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

K. Hotate, K. Takiguhi, and A. Hirose, “Adjusting-free method to eliminate the noise induced by the backscattering in an optical passive resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

1986 (1)

1984 (1)

1983 (1)

1982 (1)

T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18, 626–665 (1982).
[CrossRef]

Barbour, N.

N. Barbour and S. George, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

Barron, C. C.

J. H. Comtois, M. A. Michalicek, and C. C. Barron, “Fabricating micro-instruments in surface-micromachined polycrystalline silicon,” in Proceedings of the 43rd International Instrumentation Symposium (Instrumentation Systems, 1997), pp. 169–179.

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18, 626–665 (1982).
[CrossRef]

Chen, Y.

Y. Ren, Z. Jin, and Y. Chen, “Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. 12, 942–950 (2011).
[CrossRef]

Comtois, J. H.

J. H. Comtois, M. A. Michalicek, and C. C. Barron, “Fabricating micro-instruments in surface-micromachined polycrystalline silicon,” in Proceedings of the 43rd International Instrumentation Symposium (Instrumentation Systems, 1997), pp. 169–179.

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18, 626–665 (1982).
[CrossRef]

Demma, N.

G. A. Sanders, N. Demma, and G. F. Rouse, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Donati, S.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).

Enyama, M.

K. Hotate, M. Enyama, and S. J. Yamashita, “High density multiplexing technique of fiber Bragg grating sensors by synthesis of optical coherence function,” in Proceedings of the 41st SICE Annual Conference (IEEE, 2002), pp. 2961–2966.

Ezekiel, S.

Feng, L.

M. Lei, L. Feng, and Y. Zhi, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[CrossRef]

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

H. Yu, C. Zhang, and L. Feng, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

Feng, X.

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).
[CrossRef]

George, S.

N. Barbour and S. George, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18, 626–665 (1982).
[CrossRef]

Giuliani, G.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).

Green, W.

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

He, Z.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Higashiguchi, M.

Hinokuma, Y.

Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Hirose, A.

K. Hotate, K. Takiguhi, and A. Hirose, “Adjusting-free method to eliminate the noise induced by the backscattering in an optical passive resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

Hong, L.

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

Hotate, K.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35, 1076–1077 (1999).
[CrossRef]

K. Hotate, K. Takiguhi, and A. Hirose, “Adjusting-free method to eliminate the noise induced by the backscattering in an optical passive resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

K. Iwatsuki, K. Hotate, and M. Higashiguchi, “Effect of Rayleigh backscattering in an optical passive ring-resonator gyro,” Appl. Opt. 23, 3916–3924 (1984).
[CrossRef]

K. Hotate, M. Enyama, and S. J. Yamashita, “High density multiplexing technique of fiber Bragg grating sensors by synthesis of optical coherence function,” in Proceedings of the 41st SICE Annual Conference (IEEE, 2002), pp. 2961–2966.

Imai, T.

T. Imai, K. Nishide, and H. Ochi, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” Proc. SPIE 1585, 153–155 (1991).
[CrossRef]

Iwatsuki, K.

Jin, Z.

Z. Jin, X. Yu, and H. Ma, “Resonator fiber optic gyro employing a semiconductor laser,” Appl. Opt. 51, 2856–2864 (2012).
[CrossRef]

Y. Ren, Z. Jin, and Y. Chen, “Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. 12, 942–950 (2011).
[CrossRef]

H. Mao, H. Ma, and Z. Jin, “Polarization maintaining silica waveguide resonator optic gyro using double phase modulation technique,” Opt. Express 19, 4632–4643(2011).
[CrossRef]

H. Ma, X. Zhang, and Z. Jin, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

Kyuma, K.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

Lawrence, A. W.

A. W. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” in Proceedings of the 1990 National Technical Meeting of the Institute of Navigation (ION, 1990), pp. 161–166.

Laybourn, P. J. R.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).

Lei, M.

M. Lei, L. Feng, and Y. Zhi, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[CrossRef]

Lim, F. Y.

X. Y. Ma, F. Y. Lim, and M. Zhang, “Experimental study of polarization maintaining fiber ring resonator in resonator fiber optic gyroscope,” Proc. SPIE 3555, 363–367 (1998).
[CrossRef]

Ma, H.

Ma, X. Y.

X. Y. Ma, F. Y. Lim, and M. Zhang, “Experimental study of polarization maintaining fiber ring resonator in resonator fiber optic gyroscope,” Proc. SPIE 3555, 363–367 (1998).
[CrossRef]

Ma, Y.

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).
[CrossRef]

Mao, H.

Meyer, R. E.

Michalicek, M. A.

J. H. Comtois, M. A. Michalicek, and C. C. Barron, “Fabricating micro-instruments in surface-micromachined polycrystalline silicon,” in Proceedings of the 43rd International Instrumentation Symposium (Instrumentation Systems, 1997), pp. 169–179.

Minato, T.

Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Mukai, K.

Z. Zang, K. Mukai, and P. Navaretti, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, and P. Navaretti, “High power and stable high coupling efficiency superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Navaretti, P.

Z. Zang, K. Mukai, and P. Navaretti, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, and P. Navaretti, “High power and stable high coupling efficiency superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Nishide, K.

T. Imai, K. Nishide, and H. Ochi, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” Proc. SPIE 1585, 153–155 (1991).
[CrossRef]

Ochi, H.

T. Imai, K. Nishide, and H. Ochi, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” Proc. SPIE 1585, 153–155 (1991).
[CrossRef]

Ren, Y.

Y. Ren, Z. Jin, and Y. Chen, “Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. 12, 942–950 (2011).
[CrossRef]

Rouse, G. F.

G. A. Sanders, N. Demma, and G. F. Rouse, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Sanders, G. A.

G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).

G. A. Sanders, N. Demma, and G. F. Rouse, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

Sorel, M.

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).

Stowe, D. W.

Suzuki, K.

K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35, 1076–1077 (1999).
[CrossRef]

Tai, S.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

Takahashi, M.

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

Takiguchi, K.

K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35, 1076–1077 (1999).
[CrossRef]

Takiguhi, K.

K. Hotate, K. Takiguhi, and A. Hirose, “Adjusting-free method to eliminate the noise induced by the backscattering in an optical passive resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

Vlasov, Y.

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Wang, X.

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Yamashita, S. J.

K. Hotate, M. Enyama, and S. J. Yamashita, “High density multiplexing technique of fiber Bragg grating sensors by synthesis of optical coherence function,” in Proceedings of the 41st SICE Annual Conference (IEEE, 2002), pp. 2961–2966.

Yu, H.

H. Yu, C. Zhang, and L. Feng, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).
[CrossRef]

Yu, X.

Zang, Z.

Z. Zang, K. Mukai, and P. Navaretti, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Z. Zang, K. Mukai, and P. Navaretti, “High power and stable high coupling efficiency superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

Zarinetchi, F.

Zhang, C.

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

H. Yu, C. Zhang, and L. Feng, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

Zhang, M.

X. Y. Ma, F. Y. Lim, and M. Zhang, “Experimental study of polarization maintaining fiber ring resonator in resonator fiber optic gyroscope,” Proc. SPIE 3555, 363–367 (1998).
[CrossRef]

Zhang, X.

H. Ma, X. Zhang, and Z. Jin, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

Zhi, Y.

M. Lei, L. Feng, and Y. Zhi, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[CrossRef]

Alta Frequenza Rivista di Elettronica (1)

M. Sorel, P. J. R. Laybourn, G. Giuliani, and S. Donati, “Progress on the GaAlAs ring laser gyroscope,” Alta Frequenza Rivista di Elettronica 10, 45–47 (1998).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Z. Zang, K. Mukai, and P. Navaretti, “Thermal resistance reduction in high power superluminescent diodes by using active multi-mode interferometer,” Appl. Phys. Lett. 100, 031108 (2012).
[CrossRef]

Chin. J. Lasers (1)

X. Feng, Y. Ma, and H. Yu, “Investigation on the modulation of the optimized sensitivity for the resonator optic gyroscope,” Chin. J. Lasers 37, 1064–1067 (2010).
[CrossRef]

Electron. Lett. (1)

K. Suzuki, K. Takiguchi, and K. Hotate, “Reduction of backscattering-induced noise by ternary phase shift keying in resonator micro-optic gyro integrated on silica planar lightwave circuit,” Electron. Lett. 35, 1076–1077 (1999).
[CrossRef]

Europhys. Lett. (1)

H. Yu, C. Zhang, and L. Feng, “Limitation of rotation sensing in IORG by Rayleigh backscattering noise,” Europhys. Lett. 95, 64001 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, “Optical fiber sensor technology,” IEEE J. Quantum Electron. 18, 626–665 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Zang, T. Minato, P. Navaretti, and Y. Hinokuma, “High-power superluminescent diodes by using active multimode interferometer,” IEEE Photon. Technol. Lett. 22, 721–723 (2010).
[CrossRef]

K. Hotate, K. Takiguhi, and A. Hirose, “Adjusting-free method to eliminate the noise induced by the backscattering in an optical passive resonator gyro,” IEEE Photon. Technol. Lett. 2, 75–77 (1990).
[CrossRef]

IEEE Sens. J. (1)

N. Barbour and S. George, “Inertial sensor technology trends,” IEEE Sens. J. 1, 332–339 (2001).
[CrossRef]

IEICE Trans. Electron. (1)

Z. Zang, K. Mukai, and P. Navaretti, “High power and stable high coupling efficiency superluminescent light emitting diodes by using active multi-mode interferometer,” IEICE Trans. Electron. E94-C, 862–864 (2011).
[CrossRef]

J. Lightwave Technol. (1)

M. Takahashi, S. Tai, and K. Kyuma, “Effect of reflections on the drift characteristics of a fiber-optic passive ring-resonator gyroscope,” J. Lightwave Technol. 8, 811–816 (1990).
[CrossRef]

J. Zhejiang Univ. Sci. (1)

Y. Ren, Z. Jin, and Y. Chen, “Optimization of the resonant frequency servo loop technique in the resonator micro optic gyro,” J. Zhejiang Univ. Sci. 12, 942–950 (2011).
[CrossRef]

Jpn. J. Appl. Phys. (1)

X. Wang, Z. He, and K. Hotate, “Resonator fiber optic gyro with bipolar digital serrodyne scheme using a field-programmable gate array-based digital processor,” Jpn. J. Appl. Phys. 50, 042501 (2011).
[CrossRef]

Nat. Photonics (1)

Y. Vlasov and W. Green, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2, 242–246 (2008).
[CrossRef]

Opt. Eng. (3)

H. Ma, X. Zhang, and Z. Jin, “Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique,” Opt. Eng. 45, 080506 (2006).
[CrossRef]

L. Hong, C. Zhang, and L. Feng, “Effect of phase modulation nonlinearity in resonator micro-optic gyro,” Opt. Eng. 50, 094404 (2011).
[CrossRef]

M. Lei, L. Feng, and Y. Zhi, “Experiments on resonator micro-optic gyro using external cavity laser diode,” Opt. Eng. 51, 104602 (2012).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (3)

G. A. Sanders, “Critical review of resonator fiber optic gyroscope technology,” Proc. SPIE 44, 133–159 (1992).

X. Y. Ma, F. Y. Lim, and M. Zhang, “Experimental study of polarization maintaining fiber ring resonator in resonator fiber optic gyroscope,” Proc. SPIE 3555, 363–367 (1998).
[CrossRef]

T. Imai, K. Nishide, and H. Ochi, “Passive ring resonator fiber optic gyro using modulatable highly coherent laser diode module,” Proc. SPIE 1585, 153–155 (1991).
[CrossRef]

Other (5)

J. H. Comtois, M. A. Michalicek, and C. C. Barron, “Fabricating micro-instruments in surface-micromachined polycrystalline silicon,” in Proceedings of the 43rd International Instrumentation Symposium (Instrumentation Systems, 1997), pp. 169–179.

K. Hotate, M. Enyama, and S. J. Yamashita, “High density multiplexing technique of fiber Bragg grating sensors by synthesis of optical coherence function,” in Proceedings of the 41st SICE Annual Conference (IEEE, 2002), pp. 2961–2966.

RIO Inc. datasheet, “Low phase noise, narrow linewidth source for fiber optic sensing applications.”

G. A. Sanders, N. Demma, and G. F. Rouse, “Evaluation of polarization maintaining fiber resonator for rotation sensing applications,” in Optical Fiber Sensors (Optical Society of America, 1988), pp. 409–412.

A. W. Lawrence, “Providing an inexpensive gyro for the navigation mass market,” in Proceedings of the 1990 National Technical Meeting of the Institute of Navigation (ION, 1990), pp. 161–166.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic illustration of the RMOG based on current modulation.

Fig. 2.
Fig. 2.

Schematic illustration of the signal processing scheme.

Fig. 3.
Fig. 3.

Waveform of the triangle current.

Fig. 4.
Fig. 4.

Intensity output of the OWRR in one period (a) before eliminating accompanying amplitude modulation and (b) after eliminating accompanying amplitude modulation.

Fig. 5.
Fig. 5.

(a) Relationship between the frequency-offset and normalized output intensity with different modulation current. (b) Relationship between the slope rate and modulation current.

Fig. 6.
Fig. 6.

Resonance curves of the OWRR before/after eliminating accompanying amplitude modulation.

Fig. 7.
Fig. 7.

Locking process of the CCW detected at PD2.

Fig. 8.
Fig. 8.

(a) Test result under the static state. (b) Fitting line between gyro output and input angular velocity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

{i(t)=i0+2ippftirt[kT<t<kT+T/2]i(t)=i0+2ipp2ippftirt[kT+T/2<t<(k+1)T],
Iin(t)=K1Ai(t),
Iout(t)=TFRRIin(t),
TFRR=T22TR(cosωτQ)1+Q22Qcosωτ+(R)21(Q)2×1Q21+Q22Qcosωτ,
{τ=nL/cT=a1a(1αc)R=a1(1α)1αL×1acR=ReΔωτQ=a(1αL)Q=QeΔωτ,
{Iout_up=(1ac)ρ[I0+ΔIsqu][C02C02+(ΔfFsqu)2]Iout_down=(1ac)ρ[I0ΔIsqu][C02C02+(Δf+Fsqu)2],
ID=Iout_upIout_down=(1ac)ρ(I0+isquK1A)[C02C02+(ΔfisquK2)2](1ac)ρ(I0isquK1A)[C02C02+(Δf+isquK2)2].
K=(1αC)ρC02{2(I0+isquK1A)(ΔfisquK2)(C02+(ΔfisquK2)2)22(I0isquK1A)(Δf+isquK2)(C02+(Δf+isquK2)2)2}=4(1αC)ρC02[K1K2Aisqu2(C02+isqu2K22)2].
dkdisqu=4isqu_mK1A(C02+isqu_m2K22)216I0(C02+isqu_m2K22)isqu_m2K22(C02+isqu_m2K22)4=0.

Metrics