Abstract

High-Q deformed silica microsphere cavities are fabricated by short CO2 laser pulses, where the deformation is well controlled by adjusting the intensity and number of pulses. Using this method, directional emission from whispering-gallery mode (WGM) with a high quality factor of 107 in these microspheres is achieved, and a transition from two-directional to single-directional emission is observed. Such concentrated directional emission and high-Q of WGMs show high potential for future studies of the chaotic ray dynamics in deformed microcavity and cavity quantum electrodynamics and optomechanics.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
    [CrossRef]
  2. Y. Xiao, C. Zou, Y. Li, C. Dong, Z. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. Chin. 3, 109–124 (2010).
    [CrossRef]
  3. C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
    [CrossRef]
  4. S. Lacey and H. Wang, “Directional emission from whispering-gallery modes in deformed fused-silica microspheres,” Opt. Lett. 26, 1943–1945 (2001).
    [CrossRef]
  5. J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
    [CrossRef]
  6. T. Harayama, P. Davis, and K. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
    [CrossRef]
  7. W. Fang, H. Cao, and G. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
    [CrossRef]
  8. S. Mestanza, A. Von Zuben, and N. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
    [CrossRef]
  9. K. Shima, R. Omori, and A. Suzuki, “High-Q concentrated directional emission from egg-shaped asymmetric resonant cavities,” Opt. Lett. 26, 795–797 (2001).
    [CrossRef]
  10. S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
    [CrossRef]
  11. Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
    [CrossRef]
  12. C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).
  13. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
    [CrossRef]
  14. C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
    [CrossRef]
  15. Y. Xiao, C. Dong, Z. Han, G. Guo, and Y. Park, “Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses,” Opt. Lett. 32, 644–646 (2007).
    [CrossRef]
  16. M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
    [CrossRef]
  17. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [CrossRef]
  18. V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
    [CrossRef]
  19. C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, and G. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
    [CrossRef]
  20. C. Zou, H. Schwefel, F. Sun, Z. Han, and G. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011).
    [CrossRef]
  21. Y. Xiao, C. Dong, C. Zou, Z. Han, L. Yang, and G. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34, 509–511 (2009).
    [CrossRef]

2011 (2)

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

C. Zou, H. Schwefel, F. Sun, Z. Han, and G. Guo, “Quick root searching method for resonances of dielectric optical microcavities with the boundary element method,” Opt. Express 19, 15669–15678 (2011).
[CrossRef]

2010 (1)

Y. Xiao, C. Zou, Y. Li, C. Dong, Z. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. Chin. 3, 109–124 (2010).
[CrossRef]

2009 (6)

S. Mestanza, A. Von Zuben, and N. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, and G. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
[CrossRef]

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef]

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
[CrossRef]

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

Y. Xiao, C. Dong, C. Zou, Z. Han, L. Yang, and G. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34, 509–511 (2009).
[CrossRef]

2008 (1)

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

2007 (3)

Y. Xiao, C. Dong, Z. Han, G. Guo, and Y. Park, “Directional escape from a high-Q deformed microsphere induced by short CO2 laser pulses,” Opt. Lett. 32, 644–646 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

W. Fang, H. Cao, and G. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
[CrossRef]

2006 (1)

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

2003 (3)

T. Harayama, P. Davis, and K. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef]

S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

2001 (2)

1998 (1)

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

An, K.

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Barbour, R.

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

Cao, H.

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

W. Fang, H. Cao, and G. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
[CrossRef]

Capasso, F.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Chang, R. K.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Chern, G. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Cho, A.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Cho, J.

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Cui, J.

Cui, J. M.

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Davis, P.

T. Harayama, P. Davis, and K. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef]

Dinyari, K.

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef]

Dong, C.

Dong, C. H.

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Faist, J.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Fang, W.

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

W. Fang, H. Cao, and G. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
[CrossRef]

Fiore, V.

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Foster, D. H.

S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
[CrossRef]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Frateschi, N.

S. Mestanza, A. Von Zuben, and N. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Gmachl, C.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Gong, Q.

Y. Xiao, C. Zou, Y. Li, C. Dong, Z. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. Chin. 3, 109–124 (2010).
[CrossRef]

Guo, G.

Guo, G. C.

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Han, Z.

Han, Z. F.

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Harayama, T.

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
[CrossRef]

T. Harayama, P. Davis, and K. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef]

Hentschel, M.

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
[CrossRef]

Ho, S.

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

Ikeda, K.

T. Harayama, P. Davis, and K. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef]

Johnson, N. M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Kim, C.

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Kim, J. H.

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Kim, S.

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Kneissl, M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Kuzyk, M.

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

Lacey, S.

S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
[CrossRef]

S. Lacey and H. Wang, “Directional emission from whispering-gallery modes in deformed fused-silica microspheres,” Opt. Lett. 26, 1943–1945 (2001).
[CrossRef]

Larsson, M.

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef]

Lee, H.

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Lee, J.

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Lee, S.

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Lee, S. H.

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Li, Y.

Y. Xiao, C. Zou, Y. Li, C. Dong, Z. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. Chin. 3, 109–124 (2010).
[CrossRef]

Liu, B.

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

Mestanza, S.

S. Mestanza, A. Von Zuben, and N. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Moon, S.

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Narimanov, E.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Nockel, J.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Nockel, J. U.

S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
[CrossRef]

Oh, K. R.

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Omori, R.

Park, Y.

Rim, S.

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Sasaki, T.

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
[CrossRef]

Schwefel, H.

Shim, J.

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Shima, K.

Shinohara, S.

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
[CrossRef]

Sivco, D.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Solomon, G.

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

W. Fang, H. Cao, and G. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
[CrossRef]

Song, Q.

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

Stone, A.

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Sun, F.

Sun, F. W.

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Suzuki, A.

Tian, L.

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Von Zuben, A.

S. Mestanza, A. Von Zuben, and N. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Wang, H.

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef]

S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
[CrossRef]

S. Lacey and H. Wang, “Directional emission from whispering-gallery modes in deformed fused-silica microspheres,” Opt. Lett. 26, 1943–1945 (2001).
[CrossRef]

Wiersig, J.

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
[CrossRef]

Wu, X. W.

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Xiao, Y.

Yang, J.

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Yang, L.

Yang, Y.

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, and G. Guo, “Ringing phenomenon in silica microspheres,” Chin. Opt. Lett. 7, 299–301 (2009).
[CrossRef]

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Zou, C.

Zou, C. L.

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Appl. Phys. Lett. (3)

W. Fang, H. Cao, and G. Solomon, “Control of lasing in fully chaotic open microcavities by tailoring the shape factor,” Appl. Phys. Lett. 90, 081108 (2007).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83, 1710–1712 (2003).
[CrossRef]

C. Kim, J. Cho, J. Lee, S. Rim, S. H. Lee, K. R. Oh, and J. H. Kim, “Continuous wave operation of a spiral-shaped microcavity laser,” Appl. Phys. Lett. 92, 131110 (2008).
[CrossRef]

Chin. Opt. Lett. (1)

Front. Optoelectron. Chin. (1)

Y. Xiao, C. Zou, Y. Li, C. Dong, Z. Han, and Q. Gong, “Asymmetric resonant cavities and their applications in optics and photonics: a review,” Front. Optoelectron. Chin. 3, 109–124 (2010).
[CrossRef]

J. Appl. Phys. (1)

S. Mestanza, A. Von Zuben, and N. Frateschi, “Enhanced side-mode suppression in chaotic stadium microcavity lasers,” J. Appl. Phys. 105, 063101 (2009).
[CrossRef]

Nano Lett. (1)

M. Larsson, K. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9, 1447–1450 (2009).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (2)

S. Shinohara, M. Hentschel, J. Wiersig, T. Sasaki, and T. Harayama, “Ray-wave correspondence in limacon-shaped semiconductor microcavities,” Phys. Rev. A 80, 031801 (2009).
[CrossRef]

Q. Song, W. Fang, B. Liu, S. Ho, G. Solomon, and H. Cao, “Chaotic microcavity laser with high quality factor and unidirectional output,” Phys. Rev. A 80, 041807 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

S. Lacey, H. Wang, D. H. Foster, and J. U. Nockel, “Directional tunneling escape from nearly spherical optical resonators,” Phys. Rev. Lett. 91, 033902 (2003).
[CrossRef]

T. Harayama, P. Davis, and K. Ikeda, “Stable oscillations of a spatially chaotic wave function in a microstadium laser,” Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef]

V. Fiore, Y. Yang, M. Kuzyk, R. Barbour, L. Tian, and H. Wang, “Storing optical information as a mechanical excitation in a silica optomechanical resonator,” Phys. Rev. Lett. 107, 133601 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Yang, S. Moon, S. Lee, J. Lee, K. An, J. Shim, H. Lee, and S. Kim, “Development of a deformation-tunable quadrupolar microcavity,” Rev. Sci. Instrum. 77, 083103 (2006).
[CrossRef]

Science (2)

C. Gmachl, F. Capasso, E. Narimanov, J. Nockel, A. Stone, J. Faist, D. Sivco, and A. Cho, “High-power directional emission from microlasers with chaotic resonators,” Science 280, 1556 (1998).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef]

Other (1)

C. L. Zou, F. W. Sun, C. H. Dong, X. W. Wu, J. M. Cui, Y. Yang, G. C. Guo, and Z. F. Han, “Mechanism of unidirectional emission of ultrahigh q whispering gallery mode in microcavities,” arXiv: 0908.3531, IEEE J. Sel. Top. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Measured deformation with different CO 2 pulse intensity and number. The legend shows the laser power and microsphere diameter for each line. (b)–(d) Top views of the same microsphere variation with 0, 2, and 5 CO 2 laser pulses from the arrow direction, respectively. The sphere diameter is about 50 μm.

Fig. 2.
Fig. 2.

Sketched experimental setup and measurement results. (a) The transmission is directly measured by the photoreceiver and observed through the oscillograph (OSC). The far-field emission signals are detected by the system, composed of a microscope objective (N.A. 0.28), spatial filter with a pinhole, and a PMT. M is a flip mirror. (b) Typical far-field emission patterns from WGMs excited near the x y plane. θ is the polar angle with respect to the x axis. For squares, circles, and triangles, the in-plane deformation ϵ are estimated to be 0%, 3.0%, and 6.8%, corresponding to no-pulse, 1-pulse, and 2-pulse with pulse power 65 W / mm 2 for same microsphere with the diameter of 50 μm, respectively. Inset: the schematics of the excitation geometry. (c) The transmission (blue) and far field signals (red) are fitted well with Lorentzian-shaped curves with ( ϵ , θ ) = ( 6.8 % , 135 ° ) .

Fig. 3.
Fig. 3.

(a) Typical near-field profile of clockwise traveling WGM. The field outside of the cavity is enhanced for visualization. (b) Far-field patterns of WGMs for different deformations by Boundary Element Method simulated wave function.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r ( θ ) = { R ( 1 ϵ cos 2 θ ) if cos ( θ ) 0 R if cos ( θ ) < 0 ,

Metrics