Abstract

Photon-counting chirped amplitude modulation (PCCAM) ladar employs Geiger mode avalanche photodiode as a detector. After the detector corresponding to the echo signal is reflected from an object or target, the modulation depth (MD) of the detection outputs has some certain loss relative to that of the transmitting signal. The signal-to-noise ratio (SNR) of PCCAM ladar is mainly determined by the MD of detection outputs of the echo signal. There is a proper echo signal intensity that can decrease the MD loss and improve the SNR of the ladar receiver. In this paper, an improved PCCAM ladar system is presented, which employs an echo signal intensity optimization strategy with an iris diaphragm under different signal and noise intensities. The improved system is demonstrated with the background noise of a sunny day and the echo signal intensity from 0.1 to 10counts/ns. The experimental results show that it can effectively improve the SNR of the ladar receiver compared with the typical PCCAM ladar system.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gatt, S. Johnson, and T. Nichols, “Geiger-mode avalanche photodiode ladar receiver performance characteristics and detection statistics,” Appl. Opt. 48, 3261–3275 (2009).
    [CrossRef]
  2. F. Wang, Y. Zhao, Y. Zhang, and X. Sun, “Range accuracy limitation of pulse ranging systems based on Geiger mode single-photon detectors,” Appl. Opt. 49, 5561–5566 (2010).
    [CrossRef]
  3. M. Yamamoto, H. Yamamoto, and Y. Hayasaki, “Photon-counting digital holography under ultraweak illumination,” Opt. Lett. 34, 1081–1083 (2009).
    [CrossRef]
  4. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18, 9192–9206(2010).
    [CrossRef]
  5. B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140O (2006).
    [CrossRef]
  6. B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
    [CrossRef]
  7. B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
    [CrossRef]
  8. S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–368 (2003).
    [CrossRef]
  9. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388–5398 (2003).
    [CrossRef]
  10. Z. J. Zhang, L. Wu, Y. Zhang, Y. Zhao, and X. D. Sun, “Detection performance improvement of chirped amplitude modulation laser ladar based on Geiger-mode avalanche photoelectric detector,” Appl. Opt. 50, 6522–6525 (2011).
    [CrossRef]
  11. X. Hu, T. Zhong, J. E. White, E. A. Dauler, F. Najafi, C. H. Herder, F. N. C. Wong, and K. K. Berggren, “Fiber-coupled nanowire photon counter at 1550 nm with 24% system detection efficiency,” Opt. Lett. 34, 3607–3609 (2009).
    [CrossRef]
  12. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
    [CrossRef]

2011

2010

2009

2008

2007

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[CrossRef]

2006

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140O (2006).
[CrossRef]

2004

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

2003

S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–368 (2003).
[CrossRef]

D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388–5398 (2003).
[CrossRef]

Aliberti, K.

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

Berggren, K. K.

Buller, G. S.

Dammann, J.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[CrossRef]

Dauler, E. A.

Fouche, D. G.

Gatt, P.

Giza, M.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[CrossRef]

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140O (2006).
[CrossRef]

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

Hayasaki, Y.

Herder, C. H.

Hu, X.

Johnson, S.

Krichel, N. J.

Lawler, W.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[CrossRef]

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

Lita, A. E.

McCarthy, A.

Miller, A. J.

Najafi, F.

Nam, S. W.

Nichols, T.

Redman, B.

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140O (2006).
[CrossRef]

Redman, B. C.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[CrossRef]

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

Ruff, W.

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140O (2006).
[CrossRef]

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

Stann, B.

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[CrossRef]

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

Sun, X.

Sun, X. D.

Wang, F.

White, J. E.

Wong, F. N. C.

Wu, L.

Yamamoto, H.

Yamamoto, M.

Zhang, Y.

Zhang, Z. J.

Zhao, Y.

Zhong, T.

Appl. Opt.

Opt. Express

Opt. Lett.

Proc. SPIE

B. Redman, W. Ruff, and M. Giza, “Photon counting chirped AM ladar: concept, simulation, and initial experimental results,” Proc. SPIE 6214, 62140O (2006).
[CrossRef]

B. C. Redman, B. Stann, W. Ruff, M. Giza, K. Aliberti, and W. Lawler, “Anti-ship missile tracking with a chirped amplitude modulation ladar,” Proc. SPIE 5413, 113–124 (2004).
[CrossRef]

B. Stann, B. C. Redman, W. Lawler, M. Giza, and J. Dammann, “Chirped amplitude modulation ladar for range and Doppler measurements and 3-D imaging,” Proc. SPIE 6550, 655005 (2007).
[CrossRef]

S. Johnson, P. Gatt, and T. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359–368 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Improved PCCAM ladar system. (a) Schematic diagram of the improved system. (b) Photo of the laboratory system for the proof-of-principle experiment.

Fig. 2.
Fig. 2.

Relationship of SNR, MD, and the echo signal intensity. The SNR is measured by the experimental and the MD is obtained by Eq. (5) with the noise intensity Nn=10MHz.

Fig. 3.
Fig. 3.

Numerical results of the optimum echo signal intensity.

Fig. 4.
Fig. 4.

Schematic diagram of a detection period.

Fig. 5.
Fig. 5.

Radius adjustment quantity of the iris diaphragm. (Nn=10MHz is the noise intensity of our ladar system on a sunny day and Nn=0.1MHz is the one at night).

Fig. 6.
Fig. 6.

Experimental results with the background noise in the daylight Nn=10MHz. (a) Comparison of the SNR with the echo signal intensity from 0ns1 to 10ns1. (b) IF spectrum with the iris diaphragm processing when the echo signal intensity is 0.5ns1. (c) IF spectrum without the iris diaphragm processing when the echo signal intensity is 0.5ns1.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P(k)=Nkk!exp(N).
Pcrest(x)=k1k2w+1=xΘ(w,w)(1Picrest+k1)(1Picrest+kx)Picrest+kx+1Picrest+k2w+1,
Mmax=x=0x=2w+1x·Pcrest(x).
Mmin=x=0x=2w+1x·Ptrough(x).
M=MmaxMminMmax+Mmin.
MNsmax=Nsmax[x=0x=2w+1x·Pcrest(x)x=0x=2w+1x·Ptrough(x)x=0x=2w+1x·Pcrest(x)+x=0x=2w+1x·Ptrough(x)]=0.
Cn=N0NK1.
P(i)=1exp[Ns(i)Nn]=1exp[Nsmax1+cos{2π[f0t(i)+Kt(i)2/2+ϕ0]}2Nn].
P=1N00N0P(i)di=1N00N01exp[Nsmax1+cos{2π[f0t(i)+Kt(i)2/2+ϕ0]}2Nn]di,
Cn=K1+N0·PK2.
P=K2K1N0K1·N0/N,

Metrics