Abstract

The far-infrared spectroscopy of the troposphere (FIRST) instrument is a Fourier transform spectrometer developed to measure the Earth’s thermal emission spectrum with a particular emphasis on far-infrared (far-IR) wavelengths greater than 15 μm. FIRST was developed under NASA’s Instrument Incubator Program to demonstrate technology for providing measurements from 10 to 100 μm (1000 to 100cm1) on a single focal plane with a spectral resolution finer than 1cm1. Presently no spectrometers in orbit are capable of directly observing the Earth’s far-IR spectrum. This fact, coupled with the fundamental importance of the far-IR to Earth’s climate system, provided the impetus for the development of FIRST. In this paper the FIRST instrument is described and results of a detailed absolute laboratory calibration are presented. Specific channels in FIRST are shown to be accurate in the far-IR to better than 0.3 K at 270 K scene temperature, 0.5 K at 247 K, and 1 K at 225 K.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
    [CrossRef]
  2. S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785, (1992).
    [CrossRef]
  3. C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).
  4. J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
    [CrossRef]
  5. M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
    [CrossRef]
  6. D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
    [CrossRef]
  7. G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
    [CrossRef]
  8. H. Latvakoski and M. Watson, “Performance of highly emissivity 10 to 100 μm blackbodies,” presented at 2005 CALCON Technical Conference, Logan, Utah, 22–25 August 2005.
  9. H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
    [CrossRef]
  10. J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35, 505 (1998).
    [CrossRef]
  11. R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

2012

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

2010

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

2008

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

2006

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

2003

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

2002

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

1998

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35, 505 (1998).
[CrossRef]

1992

S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785, (1992).
[CrossRef]

Baran, A.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Bianchini, G.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Bingham, G.

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

Bingham, G. E.

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

Borelli, J.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Brindley, H.

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Cadeddu, M. P.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Carli, B.

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Clough, S. A.

S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785, (1992).
[CrossRef]

Cox, C. J.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Crewell, S.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Datla, R. U.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Delamere, J. S.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Garcia, R. R.

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Green, P.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Harries, J.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Harries, J. E.

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Hyde, C. R.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

Iacono, M. J.

S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785, (1992).
[CrossRef]

Johnson, B. C.

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35, 505 (1998).
[CrossRef]

Johnson, D. G.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Jucks, K.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

Jucks, K. W.

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

Knuteson, R. O.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Kratz, D. P.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Last, A.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Latvakoski, H.

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

H. Latvakoski and M. Watson, “Performance of highly emissivity 10 to 100 μm blackbodies,” presented at 2005 CALCON Technical Conference, Logan, Utah, 22–25 August 2005.

Latvakoski, H. M.

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

Lawrence, J.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Liu, W.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

Maestri, T.

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Maschwitz, G.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Masiello, G.

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Mertens, C. J.

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Mlawer, E. J.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Mlynczak, M.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Mlynczak, M. G.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Moncet, J.-L.

S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785, (1992).
[CrossRef]

Murray, J.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Neira, J.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Ohno, T.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Paine, S.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Palchetti, L.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Pickering, J.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Rice, J. P.

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35, 505 (1998).
[CrossRef]

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Rizzi, R.

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Scott, D.

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

Serio, C.

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Slack, K.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Slattery, M.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Soden, B. J.

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Stackhouse, P. W.

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

Taylor, P.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Tobin, D. C.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Topham, S.

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

Traub, W. A.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

Turner, D. D.

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

Watson, M.

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

H. Latvakoski and M. Watson, “Performance of highly emissivity 10 to 100 μm blackbodies,” presented at 2005 CALCON Technical Conference, Logan, Utah, 22–25 August 2005.

Wellard, S. J.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

Wojcik, M.

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

Geophys. Res. Lett.

M. G. Mlynczak, D. G. Johnson, H. Latvakoski, K. Jucks, M. Watson, D. P. Kratz, G. Bingham, W. A. Traub, S. J. Wellard, C. R. Hyde, and W. Liu, “First light from the far-infrared spectroscopy of the troposphere (FIRST) instrument,” Geophys. Res. Lett. 33, L07704, (2006).
[CrossRef]

D. D. Turner, E. J. Mlawer, G. Bianchini, M. P. Cadeddu, S. Crewell, J. S. Delamere, R. O. Knuteson, G. Maschwitz, M. Mlynczak, S. Paine, L. Palchetti, and D. C. Tobin, “Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions,” Geophys. Res. Lett. 39, L10801, (2012).
[CrossRef]

J. Geophys. Res.

S. A. Clough, M. J. Iacono, and J.-L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785, (1992).
[CrossRef]

Metrologia

J. P. Rice and B. C. Johnson, “The NIST EOS thermal-infrared transfer radiometer,” Metrologia 35, 505 (1998).
[CrossRef]

Proc. SPIE

M. G. Mlynczak, J. E. Harries, R. Rizzi, P. W. Stackhouse, D. P. Kratz, D. G. Johnson, C. J. Mertens, R. R. Garcia, and B. J. Soden, “Far-infrared: a frontier in remote sensing of Earth’s climate and energy balance,” Proc. SPIE 4485, 150–158, (2002).
[CrossRef]

H. Latvakoski, M. Watson, S. Topham, D. Scott, M. Wojcik, and G. Bingham, “A high-accuracy blackbody for CLARREO,” Proc. SPIE 7808, 78080X (2010).
[CrossRef]

G. E. Bingham, H. M. Latvakoski, S. J. Wellard, M. G. Mlynczak, D. G. Johnson, W. A. Traub, and K. W. Jucks, “Far-infrared spectroscopy of the troposphere (FIRST): sensor development and performance drivers,” Proc. SPIE 5157, 143–153, (2003).
[CrossRef]

Q. J. R. Meteorol. Soc.

C. J. Cox, J. Harries, P. Taylor, P. Green, A. Baran, J. Pickering, A. Last, and J. Murray, “Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus,” Q. J. R. Meteorol. Soc. 136, 718–739 (2010).

Rev. Geophys.

J. Harries, B. Carli, R. Rizzi, C. Serio, M. Mlynczak, L. Palchetti, T. Maestri, H. Brindley, and G. Masiello, “The far-infrared earth,” Rev. Geophys. 46, RG4004, (2008).
[CrossRef]

Other

H. Latvakoski and M. Watson, “Performance of highly emissivity 10 to 100 μm blackbodies,” presented at 2005 CALCON Technical Conference, Logan, Utah, 22–25 August 2005.

R. U. Datla, J. Neira, T. Ohno, J. P. Rice, H. Latvakoski, K. Slack, J. Borelli, M. Slattery, and J. Lawrence, “NIST thermal-infrared transfer radiometer (TXR) deployments to measure the emissivity and radiance of the LWIRCS and GOES-R ECT blackbodies,” presented at 2011 CALCON Technical Conference in Logan, Utah, 29 August–1 September 2011.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Cutaway view of FIRST with the principal components labeled and the light path shown by the thick red arrows.

Fig. 2.
Fig. 2.

Cutaway view of the LWIRCS blackbody.

Fig. 3.
Fig. 3.

Ten full-resolution FIRST spectra from detector 3. Excess vibration is present in some spectra and evident as a broad peak around 2700cm1.

Fig. 4.
Fig. 4.

Phase (left axis) for all good scans in the forward direction for detector 3 at 514cm1 with 15.4cm1 resolution for the data set where LWIRCS was at 310K. Orange (third from top) is the ABB data, red (second from top) is LWIRCS data, and black (top) is the WBB data. The green (bottom) curve (right axis) is the phase correction function at 514cm1, which shows the amount subtracted from all forward direction phases to correct for the drift.

Fig. 5.
Fig. 5.

Three average spectra of the WBB in the forward direction from detector 3 at full 0.6428cm1 resolution. The real part is the solid curve and the imaginary part is the dashed curve.

Fig. 6.
Fig. 6.

Low wavenumber section of an averaged forward direction spectrum of the WBB from detector 3 and the same spectrum with 1% nonlinearity added to the interferograms. The solid curves are the real parts and the dashed curves are the imaginary parts.

Fig. 7.
Fig. 7.

FIRST response for detectors 1, 2, and 3 (black, red, and orange, respectively) and both directions for two calibration data sets. The other detector responses are within the range shown by these three.

Fig. 8.
Fig. 8.

LWIRCS radiance from detectors 1 and 2 for LWIRCS at 324, 310, 293, 271, 247, and 225 K. The measured radiances from the other detectors fall on top of these curves. The traces along and near the zero radiance lines are the imaginary parts of the radiance spectrum.

Fig. 9.
Fig. 9.

Top: Brightness temperature for LWIRCS at 292.76 K as measured by each detector from 50 to 2200cm1. Both scan directions are shown in the same color. The horizontal black line is 293.76 K. The resolution is 0.6428cm1. Bottom: brightness temperature deviation over the 150–1000cm1 range for all detectors except 2, 5, and 10. The rms deviation (average for all detectors here) from 200 to 800cm1 is 0.067 K.

Fig. 10.
Fig. 10.

Top: brightness temperature for LWIRCS at 324.38 K for all detectors. Both scan directions are shown in the same color. The horizontal black line is 324.38 K. Bottom: brightness temperature deviation over the 150–1000cm1 range for all detectors except 2, 5, and 10. The rms deviation (average for all detectors here) from 200 to 800cm1 is 0.13 K.

Fig. 11.
Fig. 11.

Brightness temperature deviation for LWIRCS at 310.34 K for all detectors except 2, 5, and 10. The rms deviation (average for all detectors here) from 200 to 800cm1 is 0.13 K.

Fig. 12.
Fig. 12.

Brightness temperature deviations for LWIRCS at 270.55 K (left) and LWIRCS at 247.42 K (right) for all detectors except 2, 5, and 10. The rms deviations (average for all detectors here) from 200 to 800cm1 are 0.13 and 0.32 K.

Fig. 13.
Fig. 13.

Brightness temperature deviations for LWIRCS at 225.18 K (left) and 209.41 K (right) for all detectors except 2, 5, and 10. The rms deviations (average for all detectors here) from 200 to 800cm1 are 0.61 and 0.71 K.

Fig. 14.
Fig. 14.

Brightness temperature deviations with LWIRCS at 189.33 K (left) and 169.06 K (right) for all detectors except 2, 5, and 10. The rms deviations (average for all detectors here) from 200 to 800cm1 are 3.6 and 3.8 K.

Fig. 15.
Fig. 15.

Average brightness temperature deviation from 459.6 to 559.9cm1 versus LWIRCS temperature for all detectors. Only forward direction data is shown here to reduce clutter, as the reverse data results nearly overlay these. Data were taken at two separate times, with FIRST re-evacuated between collections. The arrows show data taken during the second of the two vacuum cycles.

Tables (4)

Tables Icon

Table 1. FIRST Instrument Parameters and Performance Goals

Tables Icon

Table 2. Performance Specifications for the LWIRCS Blackbody

Tables Icon

Table 3. FIRST Absolute Radiometric Calibration and Noise Performance from 200 to 800cm1

Tables Icon

Table 4. Propagation of 0.2 K ABB Uncertainty and 0.3 K WBB Uncertainty into Measurements of Targets at Several Target Temperatures and Wavenumbersa

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

II+aI2,
R=SWBBSABBP(TWBB)P(TABB).
RTarget=STargetSABBR+P(TABB).
ΔRLWIRCS=P(TLWIRCS)P(TWBB)P(TWBB)P(TABB)ΔRABB.

Metrics