Abstract

We present an approach for effectively combining high-power pulsed lasers based on a refraction displacement pulse combining technique. This approach allows for lasers combining with various repetition rates, pulse duration, polarization, output power, and wavelength. The maximum number of lasers that can be combined mainly depends on their repetition rate and pulse duration. This approach is a feasible way to combine a large number of high average power lasers while maintaining good beam quality.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
    [CrossRef]
  2. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
    [CrossRef]
  3. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National ignition facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
    [CrossRef]
  4. Q. Peng, Z. Sun, Y. Chen, L. Guo, Y. Bo, X. Yang, and Z. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
    [CrossRef]
  5. G. D. Goodno, H. Komine, S. J. McNaught, S. B. Weiss, S. Redmond, W. Long, R. Simpson, E. C. Cheung, D. Howland, P. Epp, M. Weber, M. McClellan, J. Sollee, and H. Injeyan, “Coherent combination of high-power, zigzag block lasers,” Opt. Lett. 31, 1247–1249 (2006).
    [CrossRef]
  6. T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
    [CrossRef]
  7. P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34, 2939–2941 (2009).
    [CrossRef]
  8. C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez-Rubio, and T. Y. Fan, “Coherent combining of 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36, 2686–2688 (2011).
    [CrossRef]
  9. S. M. Redmond, D. J. Ripin, C. X. Yu, S. J. Augst, T. Y. Fan, P. A. Thielen, J. E. Rothenberg, and G. D. Goodno, “Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam,” Opt. Lett. 37, 2832–2834 (2012).
    [CrossRef]
  10. H. Li and X. Ren, “Research and application of light beam combination,” Laser Optoelectron. Prog. 39, 22–25 (2002).
  11. R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
    [CrossRef]
  12. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, “2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers,” Opt. Express 17, 1178–1183 (2009).
    [CrossRef]
  13. H. Injeyan and G. D. Goodno, in High-Power Laser Handbook (McGraw-Hill, 2011).
  14. Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
    [CrossRef]

2012 (2)

D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
[CrossRef]

S. M. Redmond, D. J. Ripin, C. X. Yu, S. J. Augst, T. Y. Fan, P. A. Thielen, J. E. Rothenberg, and G. D. Goodno, “Diffractive coherent combining of a 2.5 kW fiber laser array into a 1.9 kW Gaussian beam,” Opt. Lett. 37, 2832–2834 (2012).
[CrossRef]

2011 (2)

C. X. Yu, S. J. Augst, S. M. Redmond, K. C. Goldizen, D. V. Murphy, A. Sanchez-Rubio, and T. Y. Fan, “Coherent combining of 4 kW, eight-element fiber amplifier array,” Opt. Lett. 36, 2686–2688 (2011).
[CrossRef]

R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
[CrossRef]

2010 (1)

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

2009 (2)

2007 (1)

2006 (1)

2005 (2)

2002 (2)

Auerbach, J. M.

Augst, S. J.

Behrenberg, D.

D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
[CrossRef]

Bo, Y.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Q. Peng, Z. Sun, Y. Chen, L. Guo, Y. Bo, X. Yang, and Z. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef]

Bowers, M. W.

Brückner, F.

Chen, Y.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Q. Peng, Z. Sun, Y. Chen, L. Guo, Y. Bo, X. Yang, and Z. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef]

Cheung, E. C.

Clausnitzer, T.

Cui, D.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Dixit, S. N.

Eberhardt, R.

Ebrahimzadeh, M.

Epp, P.

Erbert, G. V.

Fan, T. Y.

Franzka, S.

D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
[CrossRef]

Goldizen, K. C.

Goodno, G. D.

Gowin, M.

Guo, L.

Guo, Y.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Hartmann, N.

D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
[CrossRef]

Haynam, C. A.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Howland, D.

Hoyt, C. W.

Injeyan, H.

Jancaitis, K. S.

Jung, M.

Komine, H.

Li, H.

H. Li and X. Ren, “Research and application of light beam combination,” Laser Optoelectron. Prog. 39, 22–25 (2002).

Limpert, J.

Liu, Z.

Long, W.

Ludewigt, K.

Ma, H.

Ma, Y.

R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
[CrossRef]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34, 2939–2941 (2009).
[CrossRef]

Manes, K. R.

Marshall, C. D.

McClellan, M.

McNaught, S. J.

Mehta, N. C.

Menapace, J.

Moses, E.

Murphy, D. V.

Murray, J. R.

Nostrand, M. C.

Orth, C. D.

Patterson, R.

Peng, Q.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Q. Peng, Z. Sun, Y. Chen, L. Guo, Y. Bo, X. Yang, and Z. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef]

Peschel, T.

Petermann, N.

D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
[CrossRef]

Redmond, S.

Redmond, S. M.

Ren, X.

H. Li and X. Ren, “Research and application of light beam combination,” Laser Optoelectron. Prog. 39, 22–25 (2002).

Ripin, D. J.

Rothenberg, J. E.

Sacks, R. A.

Sanchez-Rubio, A.

Schmidt, O.

Schreiber, T.

Shaw, M. J.

Sheik-Bahae, M.

Simpson, R.

Sollee, J.

Spaeth, M.

Su, R.

R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
[CrossRef]

Sun, Z.

Sutton, S. B.

ten Have, E.

Thielen, P. A.

Tsybin, I.

Tünnermann, A.

Van Wonterghem, B. M.

Wang, X.

R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
[CrossRef]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34, 2939–2941 (2009).
[CrossRef]

Weber, M.

Wegner, P. J.

Weiss, S. B.

White, R. K.

Widmayer, C. C.

Wiggers, H.

D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
[CrossRef]

Williams, W. H.

Wirth, C.

Xie, S.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Xu, J.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Xu, X.

R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
[CrossRef]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34, 2939–2941 (2009).
[CrossRef]

Xu, Y.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Xu, Z.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Q. Peng, Z. Sun, Y. Chen, L. Guo, Y. Bo, X. Yang, and Z. Xu, “Efficient improvement of laser beam quality by coherent combining in an improved Michelson cavity,” Opt. Lett. 30, 1485–1487 (2005).
[CrossRef]

Yang, F.

Y. Xu, J. Xu, Y. Guo, F. Yang, Y. Chen, J. Xu, S. Xie, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “Compact high-efficiency 100-W-level diode-side-pumped Nd:YAG laser with linearly polarized TEM_00 mode output,” Appl. Opt. 49, 4577–4580 (2010).
[CrossRef]

Yang, S. T.

Yang, X.

Yu, C. X.

Zhou, P.

R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
[CrossRef]

P. Zhou, Y. Ma, X. Wang, H. Ma, X. Xu, and Z. Liu, “Coherent beam combination of three two-tone fiber amplifiers using stochastic parallel gradient descent algorithm,” Opt. Lett. 34, 2939–2941 (2009).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (1)

D. Behrenberg, S. Franzka, N. Petermann, H. Wiggers, and N. Hartmann, “Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology,” Appl. Phys. A 106, 853–861 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Y. Fan, “Laser beam combining for high-power, high-radiance sources,” IEEE J. Sel. Top. Quantum Electron. 11, 567–577 (2005).
[CrossRef]

Laser Optoelectron. Prog. (2)

H. Li and X. Ren, “Research and application of light beam combination,” Laser Optoelectron. Prog. 39, 22–25 (2002).

R. Su, X. Wang, P. Zhou, Y. Ma, and X. Xu, “Resent research and development of beam combination of high power pulse fiber laser,” Laser Optoelectron. Prog. 48, 101401 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Other (1)

H. Injeyan and G. D. Goodno, in High-Power Laser Handbook (McGraw-Hill, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic showing the principle of combining two pulsed lasers by refraction-beam-displacement combination. (a) Beam 1 propagates through the holes and beam 2 propagates through the FQBs. (b) Two pulsed laser beams overlap with each other in optical passes.

Fig. 2.
Fig. 2.

Schematic for combining N pulsed lasers with refraction-based beam-displacement combination. (a) Spatial path overlap of N pulsed lasers. (b) Sequence chart of N laser pulses combination.

Fig. 3.
Fig. 3.

Schematic of experimental setup of two pulsed laser beams combining. CO, collimator; PC, polarization coupler; HR, high reflection mirror; PD, photoelectric detector; and PM, power meter.

Fig. 4.
Fig. 4.

Observed oscilloscope traces of (a) pulse train of laser 1; (b) pulse train of laser 2; and (c) pulse train for combined laser beam.

Fig. 5.
Fig. 5.

(a) Intensity distribution of laser 2 before combining and (b) intensity distribution of combined beam. The white circle is PIB curve, which contains 86.4% encircled energy.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

d=H·cos(i)·{(tan(i)sin(i)/[n2sin2(i)]1/2)},

Metrics