Abstract

We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001).
    [CrossRef]
  2. D. M. Bravo-Zhivotovsky, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources,” in Hydrophysical and Hydrooptics Investigations in the Atlantic and the Pacific Oceans, A. S. Monin and K. S. Shifrin, eds. (Nauka, 1974), pp. 153–158, (in Russian).
  3. A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).
  4. B. Billard, R. H. Abbot, and M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986).
    [CrossRef]
  5. D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).
  6. F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
    [CrossRef]
  7. G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
    [CrossRef]
  8. J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurement of sea-surface slope statistics,” Appl. Opt. 36, 4202–4212 (1997).
    [CrossRef]
  9. A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Airborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353–4364 (2001).
    [CrossRef]
  10. K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Ocean. Eng. 27, 525–545 (2002).
    [CrossRef]
  11. V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
    [CrossRef]
  12. J. H. Churnside and J. J. Wilson, “Airborne lidar imaging of salmon,” Appl. Opt. 43, 1416–1424 (2004).
    [CrossRef]
  13. J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens. 26, 167–177 (2005).
    [CrossRef]
  14. Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005).
    [CrossRef]
  15. G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
    [CrossRef]
  16. F. E. Hoge, “Oceanic inherent optical properties: proposed single laser lidar and retrieval theory,” Appl. Opt. 44, 7483–7486 (2005).
    [CrossRef]
  17. E. Zege, I. Katsev, and A. Prikhach, “Retrieval of seawater inherent optical properties profiles from lidar waveforms,” Proc. SPIE 6615, 66150B (2007).
    [CrossRef]
  18. I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
    [CrossRef]
  19. V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
    [CrossRef]
  20. D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).
  21. W. H. Wells, “Theory of small angle scattering,” in Optics of the Sea (NATO, 1973), Chap. 3.3, pp. 1–19.
  22. L. E. Mertens and F. S. Replogle, “Use of point spread and beam spread function for analysis of imaging systems in water,” J. Opt. Soc. Am. 67, 1105–1117 (1977).
    [CrossRef]
  23. K. J. Voss, “Simple empirical model of the oceanic point spread function,” Appl. Opt. 30, 2647–2651 (1991).
    [CrossRef]
  24. K. J. Voss and A. Chapin, “Measurement of the point spread function in the ocean,” Appl. Opt. 29, 3638–3642 (1990).
    [CrossRef]
  25. J. W. McLean and K. J. Voss, “Point spread function in ocean water: comparison between theory and experiment,” Appl. Opt. 30, 2027–2030 (1991).
    [CrossRef]
  26. L. S. Dolin and I. M. Levin, Theory of Underwater Vision(Gidrometeoizdat, 1991) (in Russian).
  27. E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium (Springer, 1991).
  28. H. R. Gordon, “Equivalence of the point and beam spread function of scattering media: a formal demonstration,” Appl. Opt. 33, 1120–1122 (1994).
    [CrossRef]
  29. L. S. Dolin and I. M. Levin, “Optics, underwater,” Encyclopedia of Applied Physics (VCH Publishers, 1995), Vol. 12, pp. 571–601.
  30. W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.
  31. K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, 1967).
  32. L. S. Dolin and V. A. Savel’ev, “New model for light-beam spread function in a medium with strongly anisotropic scattering,” Atmos. Ocean. Phys. 36, 794–801 (2000) (in Russian).
  33. L. S. Dolin and V. A. Savel’ev, “Characterization of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam,” Atmos. Ocean. Phys. 7, 505–510 (1971) (in Russian).
  34. J. W. McLean, J. D. Freeman, and R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998).
    [CrossRef]
  35. D. L. Hutt, L. R. Bissonnette, and L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994).
    [CrossRef]
  36. L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
    [CrossRef]
  37. L. R. Bissonnette, G. Roy, and N. Roy, “Multiple-scattering-based lidar retrieval: method and results of cloud probings,” Appl. Opt. 44, 5565–5581 (2005).
    [CrossRef]
  38. L. S. Dolin, “Light beam scattering in a turbid medium layer,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7, 471–478 (1964) (in Russian).
  39. D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).
  40. I. M. Levin and O. V. Kopelevich, “Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm,” Oceanology 47, 344–349 (2007).
  41. J. W. McLean, D. R. Crawford, and C. L. Hindman, “Limits of small angle scattering theory,” Appl. Opt. 26, 2053–2054 (1987).
    [CrossRef]
  42. G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003).
    [CrossRef]
  43. B. M. Welsh and C. S. Gardner, “Performance analysis of adaptive-optics systems using laser guide stars and slope sensors,” J. Opt. Soc. Am. A 6, 1913–1923 (1989).
    [CrossRef]

2007 (4)

E. Zege, I. Katsev, and A. Prikhach, “Retrieval of seawater inherent optical properties profiles from lidar waveforms,” Proc. SPIE 6615, 66150B (2007).
[CrossRef]

I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
[CrossRef]

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

I. M. Levin and O. V. Kopelevich, “Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm,” Oceanology 47, 344–349 (2007).

2005 (5)

L. R. Bissonnette, G. Roy, and N. Roy, “Multiple-scattering-based lidar retrieval: method and results of cloud probings,” Appl. Opt. 44, 5565–5581 (2005).
[CrossRef]

J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens. 26, 167–177 (2005).
[CrossRef]

Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005).
[CrossRef]

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

F. E. Hoge, “Oceanic inherent optical properties: proposed single laser lidar and retrieval theory,” Appl. Opt. 44, 7483–7486 (2005).
[CrossRef]

2004 (1)

2003 (2)

V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
[CrossRef]

G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003).
[CrossRef]

2002 (2)

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
[CrossRef]

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Ocean. Eng. 27, 525–545 (2002).
[CrossRef]

2001 (2)

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Airborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353–4364 (2001).
[CrossRef]

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001).
[CrossRef]

2000 (1)

L. S. Dolin and V. A. Savel’ev, “New model for light-beam spread function in a medium with strongly anisotropic scattering,” Atmos. Ocean. Phys. 36, 794–801 (2000) (in Russian).

1998 (1)

1997 (1)

1994 (2)

1993 (1)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

1991 (2)

1990 (1)

1989 (1)

1988 (1)

1987 (1)

1986 (1)

1984 (1)

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).

1977 (1)

1971 (1)

L. S. Dolin and V. A. Savel’ev, “Characterization of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam,” Atmos. Ocean. Phys. 7, 505–510 (1971) (in Russian).

1969 (2)

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).

1964 (1)

L. S. Dolin, “Light beam scattering in a turbid medium layer,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7, 471–478 (1964) (in Russian).

Abbot, R. H.

Aitken, J.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Behrenfeld, M. J.

V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
[CrossRef]

Berry, R. E.

Billard, B.

Bissonnette, L. R.

Bonnier, D.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Bravo-Zhivotovsky, D. M.

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).

D. M. Bravo-Zhivotovsky, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources,” in Hydrophysical and Hydrooptics Investigations in the Atlantic and the Pacific Oceans, A. S. Monin and K. S. Shifrin, eds. (Nauka, 1974), pp. 153–158, (in Russian).

Bunkin, A. F.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).

Buntzen, R. R.

Case, K. M.

K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, 1967).

Chapin, A.

Churnside, J. H.

Cober, S. G.

Crawford, D. R.

Cunningham, A. G.

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Dolin, L. S.

I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
[CrossRef]

G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003).
[CrossRef]

L. S. Dolin and V. A. Savel’ev, “New model for light-beam spread function in a medium with strongly anisotropic scattering,” Atmos. Ocean. Phys. 36, 794–801 (2000) (in Russian).

L. S. Dolin and V. A. Savel’ev, “Characterization of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam,” Atmos. Ocean. Phys. 7, 505–510 (1971) (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).

L. S. Dolin, “Light beam scattering in a turbid medium layer,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7, 471–478 (1964) (in Russian).

L. S. Dolin and I. M. Levin, Theory of Underwater Vision(Gidrometeoizdat, 1991) (in Russian).

L. S. Dolin and I. M. Levin, “Optics, underwater,” Encyclopedia of Applied Physics (VCH Publishers, 1995), Vol. 12, pp. 571–601.

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).

D. M. Bravo-Zhivotovsky, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources,” in Hydrophysical and Hydrooptics Investigations in the Atlantic and the Pacific Oceans, A. S. Monin and K. S. Shifrin, eds. (Nauka, 1974), pp. 153–158, (in Russian).

Dolina, I. S.

I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
[CrossRef]

Durand, L.

Fadeev, V. V.

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).

Feygels, V.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Feygels, V. I.

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005).
[CrossRef]

V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
[CrossRef]

Forand, J. L.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.

Fournier, G. R.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.

Freeman, J. D.

Gardner, C. S.

Gelikonov, G. V.

G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003).
[CrossRef]

Gilbert, G. D.

Goldin, Y. A.

Gordeev, L. B.

D. M. Bravo-Zhivotovsky, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources,” in Hydrophysical and Hydrooptics Investigations in the Atlantic and the Pacific Oceans, A. S. Monin and K. S. Shifrin, eds. (Nauka, 1974), pp. 153–158, (in Russian).

Gordon, H. R.

Gray, D. J.

W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.

Gureev, B. A.

Hindman, C. L.

Hoge, F. E.

Hou, W.

W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.

Hutt, D. L.

Isaac, G. A.

Ivanov, A. P.

E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium (Springer, 1991).

Jaffe, J. S.

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Ocean. Eng. 27, 525–545 (2002).
[CrossRef]

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001).
[CrossRef]

Katsev, I.

E. Zege, I. Katsev, and A. Prikhach, “Retrieval of seawater inherent optical properties profiles from lidar waveforms,” Proc. SPIE 6615, 66150B (2007).
[CrossRef]

Katsev, I. L.

E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium (Springer, 1991).

Kopelevich, O. V.

I. M. Levin and O. V. Kopelevich, “Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm,” Oceanology 47, 344–349 (2007).

Kopilevich, Y.

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

Kopilevich, Y. I.

Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005).
[CrossRef]

V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
[CrossRef]

Kopilevich, Yu.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Krabill, W. B.

LaRocque, P.

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

Levin, I. M.

I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
[CrossRef]

I. M. Levin and O. V. Kopelevich, “Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm,” Oceanology 47, 344–349 (2007).

L. S. Dolin and I. M. Levin, Theory of Underwater Vision(Gidrometeoizdat, 1991) (in Russian).

L. S. Dolin and I. M. Levin, “Optics, underwater,” Encyclopedia of Applied Physics (VCH Publishers, 1995), Vol. 12, pp. 571–601.

Luchinin, A. G.

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).

Mani, R.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

McLean, J.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001).
[CrossRef]

McLean, J. W.

Mertens, L. E.

Mirkaliev, D. M.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).

Mochenev, S. B.

D. M. Bravo-Zhivotovsky, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources,” in Hydrophysical and Hydrooptics Investigations in the Atlantic and the Pacific Oceans, A. S. Monin and K. S. Shifrin, eds. (Nauka, 1974), pp. 153–158, (in Russian).

Moore, K. D.

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Ocean. Eng. 27, 525–545 (2002).
[CrossRef]

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001).
[CrossRef]

Ostrovsky, L. A.

J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens. 26, 167–177 (2005).
[CrossRef]

Pace, P. W.

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Park, J. Y.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Penny, M. F.

Podoba, V.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Poutier, L.

Prikhach, A.

E. Zege, I. Katsev, and A. Prikhach, “Retrieval of seawater inherent optical properties profiles from lidar waveforms,” Proc. SPIE 6615, 66150B (2007).
[CrossRef]

Ramnath, V.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Replogle, F. S.

Rodionov, A. A.

I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
[CrossRef]

Roy, G.

Roy, N.

Savel’ev, V. A.

I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
[CrossRef]

L. S. Dolin and V. A. Savel’ev, “New model for light-beam spread function in a medium with strongly anisotropic scattering,” Atmos. Ocean. Phys. 36, 794–801 (2000) (in Russian).

L. S. Dolin and V. A. Savel’ev, “Characterization of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam,” Atmos. Ocean. Phys. 7, 505–510 (1971) (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).

Sergeeva, E. A.

G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003).
[CrossRef]

Shaw, J. A.

Shchegol’kov, Y. B.

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).

Slabodyanin, V. P.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).

Strand, M. P.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001).
[CrossRef]

Surkov, A.

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005).
[CrossRef]

Surkov, A. I.

V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
[CrossRef]

Swift, R. N.

Tuell, G. H.

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005).
[CrossRef]

Turchin, I. V.

G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003).
[CrossRef]

Vasilkov, A. P.

Vlasov, D. V.

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).

Voss, K. J.

Walker, R. E.

Weidemann, A. D.

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.

Wells, W. H.

W. H. Wells, “Theory of small angle scattering,” in Optics of the Sea (NATO, 1973), Chap. 3.3, pp. 1–19.

Welsh, B. M.

Wilson, J. J.

Wright, C. W.

Yungel, J. K.

V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
[CrossRef]

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
[CrossRef]

Zege, E.

E. Zege, I. Katsev, and A. Prikhach, “Retrieval of seawater inherent optical properties profiles from lidar waveforms,” Proc. SPIE 6615, 66150B (2007).
[CrossRef]

Zege, E. P.

E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium (Springer, 1991).

Zweifel, P. F.

K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, 1967).

Appl. Opt. (15)

B. Billard, R. H. Abbot, and M. F. Penny, “Airborne estimation of sea turbidity parameters from the WRELADS laser airborne depth sounder,” Appl. Opt. 25, 2080–2088 (1986).
[CrossRef]

J. A. Shaw and J. H. Churnside, “Scanning-laser glint measurement of sea-surface slope statistics,” Appl. Opt. 36, 4202–4212 (1997).
[CrossRef]

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Airborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353–4364 (2001).
[CrossRef]

J. H. Churnside and J. J. Wilson, “Airborne lidar imaging of salmon,” Appl. Opt. 43, 1416–1424 (2004).
[CrossRef]

F. E. Hoge, “Oceanic inherent optical properties: proposed single laser lidar and retrieval theory,” Appl. Opt. 44, 7483–7486 (2005).
[CrossRef]

F. E. Hoge, C. W. Wright, W. B. Krabill, R. R. Buntzen, G. D. Gilbert, R. N. Swift, J. K. Yungel, and R. E. Berry, “Airborne lidar detection of subsurface oceanic scattering layers,” Appl. Opt. 27, 3969–3977 (1988).
[CrossRef]

K. J. Voss, “Simple empirical model of the oceanic point spread function,” Appl. Opt. 30, 2647–2651 (1991).
[CrossRef]

K. J. Voss and A. Chapin, “Measurement of the point spread function in the ocean,” Appl. Opt. 29, 3638–3642 (1990).
[CrossRef]

J. W. McLean and K. J. Voss, “Point spread function in ocean water: comparison between theory and experiment,” Appl. Opt. 30, 2027–2030 (1991).
[CrossRef]

H. R. Gordon, “Equivalence of the point and beam spread function of scattering media: a formal demonstration,” Appl. Opt. 33, 1120–1122 (1994).
[CrossRef]

J. W. McLean, J. D. Freeman, and R. E. Walker, “Beam spread function with time dispersion,” Appl. Opt. 37, 4701–4711 (1998).
[CrossRef]

D. L. Hutt, L. R. Bissonnette, and L. Durand, “Multiple field of view lidar returns from atmospheric aerosols,” Appl. Opt. 33, 2338–2348 (1994).
[CrossRef]

L. R. Bissonnette, G. Roy, L. Poutier, S. G. Cober, and G. A. Isaac, “Multiple-scattering lidar retrieval method: tests on Monte Carlo simulations and comparisons with in situ measurements,” Appl. Opt. 41, 6307–6324 (2002).
[CrossRef]

L. R. Bissonnette, G. Roy, and N. Roy, “Multiple-scattering-based lidar retrieval: method and results of cloud probings,” Appl. Opt. 44, 5565–5581 (2005).
[CrossRef]

J. W. McLean, D. R. Crawford, and C. L. Hindman, “Limits of small angle scattering theory,” Appl. Opt. 26, 2053–2054 (1987).
[CrossRef]

Atmos. Ocean. Phys. (2)

L. S. Dolin and V. A. Savel’ev, “New model for light-beam spread function in a medium with strongly anisotropic scattering,” Atmos. Ocean. Phys. 36, 794–801 (2000) (in Russian).

L. S. Dolin and V. A. Savel’ev, “Characterization of back scattering signal at pulse radiation of turbid medium by a narrow directional light beam,” Atmos. Ocean. Phys. 7, 505–510 (1971) (in Russian).

Dokl. Akad. Nauk USSR (1)

A. F. Bunkin, D. V. Vlasov, D. M. Mirkaliev, and V. P. Slabodyanin, “Laser sounding of the turbidity profile and mapping of phytoplankton,” Dokl. Akad. Nauk USSR 279, 335–337 (1984) (in Russian).

IEEE J. Ocean. Eng. (1)

K. D. Moore and J. S. Jaffe, “Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan mapping system,” IEEE J. Ocean. Eng. 27, 525–545 (2002).
[CrossRef]

Int. J. Remote Sens. (1)

J. H. Churnside and L. A. Ostrovsky, “Lidar observation of a strongly nonlinear internal wave train in the Gulf of Alaska,” Int. J. Remote Sens. 26, 167–177 (2005).
[CrossRef]

Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) (2)

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Some problems of the theory of visibility in turbid media,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 388–393 (1969) (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, A. G. Luchinin, and V. A. Savel’ev, “Structure of a narrow light beam in sea water,” Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. (Engl. Transl.) 5, 160–167 (1969).

Izv. Vyssh. Uchebn. Zaved. Radiofiz. (1)

L. S. Dolin, “Light beam scattering in a turbid medium layer,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 7, 471–478 (1964) (in Russian).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Oceanography (1)

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: status and prospects,” Oceanography 14, 64–75 (2001).
[CrossRef]

Oceanology (1)

I. M. Levin and O. V. Kopelevich, “Correlations between the inherent hydrooptical characteristics in the spectral range close to 550 nm,” Oceanology 47, 344–349 (2007).

Opt. Eng. (1)

G. R. Fournier, D. Bonnier, J. L. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32, 2185–2190 (1993).
[CrossRef]

Proc. SPIE (6)

V. I. Feygels, Y. I. Kopilevich, A. I. Surkov, J. K. Yungel, and M. J. Behrenfeld, “Airborne lidar system with variable field-of-view receiver for water optical measurements,” Proc. SPIE 5155, 12–21 (2003).
[CrossRef]

Y. I. Kopilevich, V. I. Feygels, G. H. Tuell, and A. Surkov, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): I. Theoretical background,” Proc. SPIE 5885, 106–114 (2005).
[CrossRef]

G. H. Tuell, V. Feygels, Yu. Kopilevich, A. D. Weidemann, A. G. Cunningham, R. Mani, V. Podoba, V. Ramnath, J. Y. Park, and J. Aitken, “Measurement of ocean water optical properties and seafloor reflectance with scanning hydrographic operational airborne lidar survey (SHOALS): II. Practical results and comparison with independent data,” Proc. SPIE 5885, 115–127 (2005).
[CrossRef]

E. Zege, I. Katsev, and A. Prikhach, “Retrieval of seawater inherent optical properties profiles from lidar waveforms,” Proc. SPIE 6615, 66150B (2007).
[CrossRef]

I. S. Dolina, L. S. Dolin, I. M. Levin, A. A. Rodionov, and V. A. Savel’ev, “Inverse problems of lidar sensing of the ocean,” Proc. SPIE 6615, 66150C (2007).
[CrossRef]

V. I. Feygels, Y. Kopilevich, G. H. Tuell, A. Surkov, P. LaRocque, and A. G. Cunningham, “Estimation of the water optical properties and bottom reflectance from SHOALS data,” Proc. SPIE 6615, 66150F (2007).
[CrossRef]

Radiophys. Quantum Electron. (1)

G. V. Gelikonov, L. S. Dolin, E. A. Sergeeva, and I. V. Turchin, “Multiple backscattering effects in optical coherence tomography images of layered turbid media,” Radiophys. Quantum Electron. 46, 565–576 (2003).
[CrossRef]

Other (8)

D. M. Bravo-Zhivotovsky, L. B. Gordeev, L. S. Dolin, and S. B. Mochenev, “Determining the absorption and scattering coefficients of sea water by some characteristics of a light field of artificial light sources,” in Hydrophysical and Hydrooptics Investigations in the Atlantic and the Pacific Oceans, A. S. Monin and K. S. Shifrin, eds. (Nauka, 1974), pp. 153–158, (in Russian).

D. M. Bravo-Zhivotovsky, L. S. Dolin, V. A. Savel’ev, V. V. Fadeev, and Y. B. Shchegol’kov, “Optical methods for sounding of the ocean: laser remote sensing,” in Methods of Remote Sensing of the Ocean, D. M. Bravo-Zhivotovsky and L. S. Dolin, eds. (Institute of Applied Physics, 1987), pp. 84–125 (in Russian).

W. H. Wells, “Theory of small angle scattering,” in Optics of the Sea (NATO, 1973), Chap. 3.3, pp. 1–19.

L. S. Dolin and I. M. Levin, Theory of Underwater Vision(Gidrometeoizdat, 1991) (in Russian).

E. P. Zege, A. P. Ivanov, and I. L. Katsev, Image Transfer Through a Scattering Medium (Springer, 1991).

L. S. Dolin and I. M. Levin, “Optics, underwater,” Encyclopedia of Applied Physics (VCH Publishers, 1995), Vol. 12, pp. 571–601.

W. Hou, D. J. Gray, A. D. Weidemann, G. R. Fournier, and J. L. Forand, “Automated underwater image restoration and retrieval of related optical properties,” IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007) (IEEE, 2007), pp. 1889–1892.

K. M. Case and P. F. Zweifel, Linear Transport Theory(Addison-Wesley, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

On the definition of the PSF. OPS is the omnidirectional point source located at the depth z0; LOPS(r,z0) is the apparent radiance in the plane z=z0 at the point r.

Fig. 2.
Fig. 2.

On the definition of the BSF. UPS is the unidirectional point source located in the plane z=0; EUPS(r,z0) is the irradiance at the point r of the plane z=z0.

Fig. 3.
Fig. 3.

Idea of lidar measurement of MTF. EUPS(r,zt) is the irradiance distributions at the depth zt from the pulsed laser source; L(r0,zt) is the water-leaving radiance at the time t as a function of the intersection point of the sight line with the plane z=zt; the angular dependence of water-leaving radiance reproduces the convolution of BSF and PSF.

Fig. 4.
Fig. 4.

Schematic diagrams of MTF-measuring lidars. (a) Lidar with time-gated multielement photo detector (PD); L is the objective lens. (b) Lidar with a single-element time-gated detector with variable pinhole; D is the diameter of a pinhole. (c) Lidar of separated source and receiver with narrow detection angle; nS,R are the optical axes of source (S) and receiver (R), and s is the distance between the source and the receiver.

Fig. 5.
Fig. 5.

MTF of a water layer of various optical thicknesses. Parameters q and b1z are indicated in the figure.

Fig. 6.
Fig. 6.

Two operation modes of the laser-pulsed IS. Left: bottom imaging mode. An image of the sea bottom is formed by synchronous scanning of the source and the receiver beams along X direction perpendicular to the direction of the IS movement (Y-direction). Right: IS MTF measurement mode. The MTF of IS is determined by measuring the power of the echo signal from the bottom water layer, depending on the angle ψ between the source and receiver beams.

Fig. 7.
Fig. 7.

Illustration of the signal registered from the water layer atop the sea bottom used in determination of IS MTF and the signal from the bottom itself.

Fig. 8.
Fig. 8.

Dependence of the water-scattered signal P (in watts) on the angle ψ (in degrees) calculated from Eq. (35) with the value of the total attenuation coefficient c=0.3m1. The values of depth z0 (in meters) are indicated in the figure.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

T(k,z0)=0LOPS(r,z0)J0(kr)rdr/0LOPS(r,z0)rdr,
EUPS(r,z0)=4πLOPS(r,z0),
T(k,z0)=E˜UPS(k,z0)/E˜UPS(0,z0),E˜UPS(k,z0)=0EUPS(r,z0)J0(kr)rdr.
x(γ)=(12pb)x1(γ)+2pb,
L(r0,zt)=(vW/4π)bb(zt)EUPS(r,zt)EUPS(|rr0|,zt)dr,
L˜(k,zt)=0L(r0,zt)J0(kr0)r0dr0,
L˜(k,zt)=2π2vWbb(zt)(E˜UPS(k,zt))2.
T(k,zt)=E˜UPS(k,zt)/E˜UPS(0,zt)=L˜(k,zt)/L˜(0,zt).
EUPS(r,zt)=PUPS(zt)2π0T(k,zt)J0(kr)kdk,
PUPS(zt)=2π0EUPS(r,zt)rdr,
L(r0,zt)=ft2ΣE(r1,zt),wherer1=ftztr0andft=f1f/zt.
E(r1,zt)=12πr1ft(Pϑr)ϑr=r1/ft.
P˜(k,zt)=0P(r0,zt)J0(kr0)r0dr0.
T(k,z)=exp[b1z+b10zxs(kς)dς],xs(p)=(1/2)0x1(γ)J0(pγ)γdγ.
x1(γ)=(2q/γ)exp(qγ).
b1=1TTz|k>k*.
xs(p)=1+1b1TTz|k=p/zorxs(p)=1+1b1z[lnT+kTTk]|k=p/z.
PB(r0,z0)=P1(z0)RB(r)Q(|r0r|,z0)dr,
Q(r0,z0)dr0=2π0Q(r0,z0)r0dr0=1.
TIS(k,z0)=Q(r0,z0)exp(ikr0)dr0=2π0Q(r0,z0)J0(kr0)r0dr0.
R˜B(k)=(2π)1RB(r)exp(ikr)dr,
P˜B(k,z0)=(2π)1PB(r0,z0)exp(ikr0)dr0.
P˜B(k,z0)=P1(z0)TIS(k,z0)R˜B(k).
Q(r0,z0)=E2(r0,z0)/E2(r0,z0)dr0.
P1(z0)=2PSΣΣPDf20E2(r,z0)rdr.
TIS(k,z0)=E˜(k,z0)E˜(|kk|,z0)dkE˜2(k,z0)dk,
E˜(k,z0)=(2π)1E(r0,z0)exp(ikr0)dr0=0E(r0,z0)J0(kr0)r0dr0.
P(r0,z0)AE(r,z0)E(|rr0|,z0)dr,
A=vWΣΣPD4πf2bb(z0).
E˜(k,z0)=P˜(k,z0)/2πA,
P˜(k,z0)=0P(r0,z0)J0(kr0)r0dr0.
P˜(k,z0)=z020P^(ψ,z0)J0(kz0ψ)ψdψ.
TIS(k,z0)=P˜(k,z0)P˜(|kk|,z0)dkP˜(k,z0)dk.
I(r0,z0)=(2π)1P˜B(k,z0)TIS(k,z0)exp(ikr0)dk.
P^(ψ,z0)=vWDL2bb8z02exp(2a1z0)0T2(k,z0)J12(kz0ϑs)J0(kz0ψ)dkk,
bb=0.018·c,a1(m1)=0.092·c(m1)+0.048,b1(m1)=0.908·c(m1)0.048,q2=19.1·c(m1)0.950.34·c(m1)0.01.

Metrics