Abstract

An optical vortex coronagraph that makes efficient use of a larger fraction of the clear aperture of a Cassegrain-type telescope is described. This design incorporates an elliptical subaperture rather than the conventional circular subaperture. We derive a new vortex phase mask that maintains the same theoretical contrast of a circularly symmetric vortex coronagraph.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
    [CrossRef]
  2. D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
    [CrossRef]
  3. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
    [CrossRef]
  4. J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 053901 (2006).
  5. G. A. Swartzlander, E. L. Ford, R. S. Abdul-Malik, L. M. Close, M. A. Peters, D. M. Palacios, and D. W. Wilson, “Astronomical demonstration of an optical vortex coronagraph,” Opt. Express 16, 10200–10207 (2008).
    [CrossRef]
  6. G. A. Swartzlander, “The optical vortex coronagraph,” J. Opt. A 11, 094022 (2009).
    [CrossRef]
  7. E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464, 1018–1020 (2010).
    [CrossRef]
  8. E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
    [CrossRef]
  9. D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
    [CrossRef]
  10. “Telescopio Nazionale Galileo,” http://www.tng.iac.es/ .
  11. B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).
  12. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
    [CrossRef]
  13. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
    [CrossRef]
  14. G. A. Swartzlander, “Broadband nulling of a vortex phase mask,” Opt. Lett. 30, 2876–2878 (2005).
    [CrossRef]
  15. E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
    [CrossRef]
  16. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [CrossRef]
  17. D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009).
    [CrossRef]
  18. S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
    [CrossRef]
  19. N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
    [CrossRef]
  20. D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
    [CrossRef]
  21. D. Mawet, E. Serabyn, J. K. Wallace, and L. Pueyo, “Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph,” Opt. Lett. 36, 1506–1508 (2011).
    [CrossRef]
  22. J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).
  23. C. Jenkins, “Optical vortex coronagraphs on ground-based telescopes,” Mon. Not. R. Astron. Soc. 384, 515–524 (2008).
    [CrossRef]
  24. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover, 2000).
  25. D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
    [CrossRef]

2012 (1)

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

2011 (2)

2010 (4)

D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
[CrossRef]

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464, 1018–1020 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

2009 (2)

2008 (2)

2007 (1)

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

2006 (2)

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 053901 (2006).

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

2005 (3)

2004 (1)

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

2001 (1)

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

2000 (1)

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
[CrossRef]

1994 (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

1939 (1)

B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).

Abdul-Malik, R. S.

Absil, O.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[CrossRef]

Baba, N.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Barbieri, C.

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

Beijersbergen, M. W.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Berkefeld, T.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Bianchini, A.

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

Boccaletti, A.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
[CrossRef]

Burruss, R.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464, 1018–1020 (2010).
[CrossRef]

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

Chigrinov, V.

Clénet, Y.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
[CrossRef]

Close, L. M.

Coerwinkel, R. P. C.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Du, T.

Foo, G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 053901 (2006).

G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
[CrossRef]

Ford, E. L.

Ford, V. G.

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

Gappinger, R.

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

Haguenauer, P.

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

Hamaguchi, S.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Hanot, C.

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).

Hickey, J.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

Ho, T.

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

Hoppe, D.

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

Ise, A.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Jenkins, C.

C. Jenkins, “Optical vortex coronagraphs on ground-based telescopes,” Mon. Not. R. Astron. Soc. 384, 515–524 (2008).
[CrossRef]

Johnson, E. G.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 053901 (2006).

Kern, B. D.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Koresko, C. D.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Korn, G. A.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover, 2000).

Korn, T. M.

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover, 2000).

Krist, J.

D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
[CrossRef]

Kristensen, M.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Kuchner, M. J.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Labeyrie, A.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
[CrossRef]

Lee, J. H.

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 053901 (2006).

Liewer, K.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009).
[CrossRef]

Lisman, P. D.

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

Lowman, A. E.

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

Lyot, B.

B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).

Makidon, R. B.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Mari, E.

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

Marrucci, L.

S. Slussarenko, A. Murauski, T. Du, V. Chigrinov, L. Marrucci, and E. Santamato, “Tunable liquid crystal q-plates with arbitrary topological charge,” Opt. Express 19, 4085–4090 (2011).
[CrossRef]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Massari, M.

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

Mawet, D.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

D. Mawet, E. Serabyn, J. K. Wallace, and L. Pueyo, “Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph,” Opt. Lett. 36, 1506–1508 (2011).
[CrossRef]

D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464, 1018–1020 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009).
[CrossRef]

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[CrossRef]

McEldowney, S.

Mennesson, B.

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

Moody, D.

D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
[CrossRef]

Moody, D. C.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Murakami, H.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Murakami, N.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Murauski, A.

Nishikawa, J.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

O’Brien, N.

Oka, K.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Oshiyama, F.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Palacios, D. M.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

Peters, M. A.

Prasciolu, M.

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

Pueyo, L.

D. Mawet, E. Serabyn, J. K. Wallace, and L. Pueyo, “Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph,” Opt. Lett. 36, 1506–1508 (2011).
[CrossRef]

D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
[CrossRef]

Riaud, P.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[CrossRef]

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
[CrossRef]

Romanato, F.

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

Rouan, D.

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
[CrossRef]

Sakamoto, M.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Santamato, E.

Serabyn, E.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

D. Mawet, E. Serabyn, J. K. Wallace, and L. Pueyo, “Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph,” Opt. Lett. 36, 1506–1508 (2011).
[CrossRef]

D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
[CrossRef]

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464, 1018–1020 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009).
[CrossRef]

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

Shaklan, S. B.

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

Shemo, D.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, “Optical vectorial vortex coronagraphs using liquid crystal polymers: theory, manufacturing and laboratory demonstration,” Opt. Express 17, 1902–1918 (2009).
[CrossRef]

Sivaramakrishnan, A.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Slussarenko, S.

Surdej, J.

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[CrossRef]

Swartzlander, G. A.

Tamburini, F.

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

Tamura, M.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Traub, W. A.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

Trauger, J. T.

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

Troy, M.

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

Wallace, J. K.

Wallace, K.

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

Wilson, D. W.

Woerdman, J. P.

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Astrophys. J. (4)

D. Mawet, P. Riaud, O. Absil, and J. Surdej, “Annular groove phase mask coronagraph,” Astrophys. J. 633, 1191–1200 (2005).
[CrossRef]

E. Serabyn, K. Wallace, M. Troy, B. Mennesson, P. Haguenauer, R. Gappinger, and R. Burruss, “Extreme adaptive optics imaging with a clear and well‐corrected off‐axis telescope subaperture,” Astrophys. J. 658, 1386–1391 (2007).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, “The vector vortex coronagraph: laboratory results and first light at Palomar Observatory,” Astrophys. J. 709, 53–57 (2010).
[CrossRef]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, and M. J. Kuchner, “Ground‐based coronagraphy with high‐order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

J. Opt. A (1)

G. A. Swartzlander, “The optical vortex coronagraph,” J. Opt. A 11, 094022 (2009).
[CrossRef]

Mon. Not. R. Astron. Soc. (2)

B. Lyot, “The study of the solar corona and prominences without eclipses,” Mon. Not. R. Astron. Soc. 99, 580–594 (1939).

C. Jenkins, “Optical vortex coronagraphs on ground-based telescopes,” Mon. Not. R. Astron. Soc. 384, 515–524 (2008).
[CrossRef]

Nature (1)

E. Serabyn, D. Mawet, and R. Burruss, “An image of an exoplanet separated by two diffraction beamwidths from a star,” Nature 464, 1018–1020 (2010).
[CrossRef]

Opt. Commun. (1)

M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phaseplate,” Opt. Commun. 112, 321–327 (1994).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. Lett. (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[CrossRef]

J. H. Lee, G. Foo, E. G. Johnson, and G. A. Swartzlander, “Experimental verification of an optical vortex coronagraph,” Phys. Rev. Lett. 97, 053901 (2006).

Proc. SPIE (4)

V. G. Ford, P. D. Lisman, S. B. Shaklan, J. T. Trauger, T. Ho, D. Hoppe, and A. E. Lowman, “The Terrestrial Planet Finder coronagraph: technology and mission design studies,” Proc. SPIE 5487, 1274–1283 (2004).
[CrossRef]

E. Mari, F. Tamburini, C. Barbieri, A. Bianchini, M. Prasciolu, M. Massari, and F. Romanato, “Fabrication and testing of phase masks for optical vortex coronagraph to observe extrasolar planets,” Proc. SPIE 7735, 773534 (2010).
[CrossRef]

N. Murakami, J. Nishikawa, W. A. Traub, D. Mawet, D. C. Moody, B. D. Kern, J. T. Trauger, E. Serabyn, S. Hamaguchi, F. Oshiyama, M. Sakamoto, A. Ise, K. Oka, N. Baba, H. Murakami, and M. Tamura, “Coronagraph focal-plane phase masks based on photonic crystal technology: recent progress and observational strategy,” Proc. SPIE 8442, 844205 (2012).
[CrossRef]

D. Mawet, L. Pueyo, D. Moody, J. Krist, and E. Serabyn, “The vector vortex coronagraph: sensitivity to central obscuration, low-order aberrations, chromaticism, and polarization,” Proc. SPIE 7739, 773914 (2010).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

D. Rouan, P. Riaud, A. Boccaletti, Y. Clénet, and A. Labeyrie, “The four‐quadrant phase‐mask coronagraph. I. Principle,” Publ. Astron. Soc. Pac. 112, 1479–1486 (2000).
[CrossRef]

Other (3)

G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover, 2000).

J. W. Hardy, Adaptive Optics for Astronomical Telescopes(Oxford University, 1998).

“Telescopio Nazionale Galileo,” http://www.tng.iac.es/ .

Supplementary Material (1)

» Media 1: MOV (238 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Schematic of an OVC with entrance pupil lens (L1), vortex lens (VL), collimating lens (L2), Lyot stop (LS), and imaging lens (L3). (b) Off-axis light is transmitted to the detector, whereas (c) on-axis coherent light is diffracted outside the LS. The field at the xy plane for each case is shown.

Fig. 2.
Fig. 2.

Pupil functions of a centrally obscured telescope without spiders (a) and with spiders (c). The resultant irradiance distribution at the xy plane for each case is shown in (b) and (d), respectively. The secondary mirror produces a second ring-of-fire pattern within the image of the outer telescope radius. When spiders are included, they appear illuminated at the xy plane.

Fig. 3.
Fig. 3.

(a) Circular and (b) elliptical subapertures (white) for a Cassegrain telescope having widely spaced spiders. (c) Areal fraction, γ, and enhancement β=γellipse/γcircle. For the TNG, Rin/Rout=0.33.

Fig. 4.
Fig. 4.

Pupil functions and corresponding field distributions for (a)–(d) circular and (e)–(h) elliptical pupils. Rings of fire for m=2 and m=4 are shown.

Fig. 5.
Fig. 5.

VL phase profiles Φ(x,y) for (a) m=2, circular aperture; (b) m=2, elliptical aperture; a/b=2.3; and (c) same as (b) with m=4.

Fig. 6.
Fig. 6.

Fraction of power transmitted from a point source translated along the major and minor axes (a/b=2.3, m=2). The angular separation for an elliptical OVC on the TNG at λ=2μm is indicated by the upper scale (milliarcseconds).

Fig. 7.
Fig. 7.

Ideal OVC image of a star and planet at four locations. Positions 1 and 2 are at an angular separation of 2θa, and positions 3 and 4 are at an angular separation of 4θa. The elliptical subaperture aspect ratio is a/b=2.3. Unwanted stellar radiation forms large Airy rings. The stellar irradiance is comparable to that of the planet at position 1. On the TNG, θa=82 milliarcseconds at λ=2μm (Media 1).

Fig. 8.
Fig. 8.

Rings of fire for dual elliptical subapertures though a single OVC (linear grayscale) and log-irradiance profile along x axis.

Fig. 9.
Fig. 9.

Fraction of power leaked through hyper-elliptical system (a=b) with a CVL with topological charge m=2 [see Fig. 5(a)] and a 4QPM. The light-gathering power enhancement β=Aq/A2 is also shown. The inset illustrates the hyper-elliptic aperture with q=3 as well as the phase profile and orientation of the 4QPM.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FT{f(x/a,y/b)}=|ab|F(ax,by).
U(x,y)=2πabiλfexp{ik2f[(ax)2+(by)2]}×J1(k(ax)2+(by)2/f)k(ax)2+(by)2/fexp(iΦ),
Φ=marctan(by/ax),
U(x,y)={[(xa)2+(yb)2]1exp(iΦ),(xa)2+(yb)2>10,otherwise,

Metrics