Abstract

Thermo-optic modulation experiments were conducted on devices constructed as Au stripes cladded with Cytop designed for a working wavelength of 1310 nm by injecting electric current through metal probes to heat the active region and to change the refractive index of the claddings. Electromigration failure was prevented by controlling the current density below a safety limit. Straight waveguides and single-output Mach–Zehnder interferometers were thermally modulated, in which mode extinction was reached by antiguiding and by destructive interference, respectively. Polymeric memory effects were observed in the operation of the devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  2. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [CrossRef]
  4. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
    [CrossRef]
  5. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
    [CrossRef]
  6. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006).
    [CrossRef]
  7. A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon-polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
    [CrossRef]
  8. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
    [CrossRef]
  9. A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
    [CrossRef]
  10. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391–4402 (2006).
    [CrossRef]
  11. I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
    [CrossRef]
  12. I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971–1977 (2006).
    [CrossRef]
  13. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
    [CrossRef]
  14. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
    [CrossRef]
  15. K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16, 15546–15552 (2008).
    [CrossRef]
  16. S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402–404 (2006).
  17. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 455–459 (2004).
    [CrossRef]
  18. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2000).
    [CrossRef]
  19. C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010).
    [CrossRef]
  20. H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 511459–1467 (2012).
  21. Amorphous Fluoropolymer CYTOP, Asahi Glass Co., Ltd, http://www.agc-cytop.com/ , January 2009.
  22. Dupont, Teflon AF Properties, www.dupont.com .
  23. A. W. Wark, H. J. Lee, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Anal. Chem. 77, 5096–5100 (2005).
    [CrossRef]
  24. A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
    [CrossRef]
  25. R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
    [CrossRef]
  26. J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
    [CrossRef]
  27. Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
    [CrossRef]
  28. Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd.56, 35–38 (Asahi Glass, 2006).
  29. B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
    [CrossRef]
  30. M. Paniccia, P. Flynn, and R. Reifenberger, “Scanning probe microscopy studies of electromigration in electroplated Au wires,” J. Appl. Phys. 73, 8189–8197 (1993).
    [CrossRef]
  31. A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors,” J. Appl. Phys. 79, 163–169(1996).
    [CrossRef]
  32. T. Rosenzveig, P. G. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys. A 100, 341–346 (2010).
    [CrossRef]
  33. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
    [CrossRef]
  34. S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.
  35. E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solids (Academic, 1999).

2012

2010

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

T. Rosenzveig, P. G. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys. A 100, 341–346 (2010).
[CrossRef]

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010).
[CrossRef]

2009

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

2008

2007

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

2006

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402–404 (2006).

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006).
[CrossRef]

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon-polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391–4402 (2006).
[CrossRef]

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971–1977 (2006).
[CrossRef]

2005

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

A. W. Wark, H. J. Lee, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Anal. Chem. 77, 5096–5100 (2005).
[CrossRef]

2004

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 455–459 (2004).
[CrossRef]

2000

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

1996

A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors,” J. Appl. Phys. 79, 163–169(1996).
[CrossRef]

1993

M. Paniccia, P. Flynn, and R. Reifenberger, “Scanning probe microscopy studies of electromigration in electroplated Au wires,” J. Appl. Phys. 73, 8189–8197 (1993).
[CrossRef]

Agnarsson, B.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Arnfinnsdottir, N.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Berini, P.

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 511459–1467 (2012).

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
[CrossRef]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[CrossRef]

R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 477–494 (2006).
[CrossRef]

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally activated variable attenuation of long-range surface plasmon-polariton waves,” J. Lightwave Technol. 24, 4391–4402 (2006).
[CrossRef]

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides,” J. Opt. Soc. Am. A 23, 1971–1977 (2006).
[CrossRef]

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13, 977–984 (2005).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2000).
[CrossRef]

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon-polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 455–459 (2004).
[CrossRef]

Breukelaar, I.

Brinker, W.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Buckley, R.

Charbonneau, R.

Chiu, C.

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010).
[CrossRef]

Cho, S.-Y.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Corn, R. M.

A. W. Wark, H. J. Lee, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Anal. Chem. 77, 5096–5100 (2005).
[CrossRef]

Degiron, A.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Dostálek, J.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

Fafard, S.

Fan, H.

Flynn, P.

M. Paniccia, P. Flynn, and R. Reifenberger, “Scanning probe microscopy studies of electromigration in electroplated Au wires,” J. Appl. Phys. 73, 8189–8197 (1993).
[CrossRef]

Gagnon, G.

Ghosh, G.

E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solids (Academic, 1999).

Grote, N.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Gudjonsson, T.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Halldorsson, J.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Hermannsson, P. G.

T. Rosenzveig, P. G. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys. A 100, 341–346 (2010).
[CrossRef]

K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16, 15546–15552 (2008).
[CrossRef]

Ho, S. T.

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

Homola, J.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Ingthorsson, S.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

Jokerst, N. M.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Kasry, A.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Keil, N.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Kim, K. C.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, P. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, S. I.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Kim, S.-S.

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

Kjaer, K.

Knoll, W.

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Kuwana, Y.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd.56, 35–38 (Asahi Glass, 2006).

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Lahoud, N.

Larsen, M. S.

Lee, H. J.

A. W. Wark, H. J. Lee, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Anal. Chem. 77, 5096–5100 (2005).
[CrossRef]

Leosson, K.

T. Rosenzveig, P. G. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys. A 100, 341–346 (2010).
[CrossRef]

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16, 15546–15552 (2008).
[CrossRef]

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 455–459 (2004).
[CrossRef]

Lisicka-Shrzek, E.

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010).
[CrossRef]

Lu, W.-K.

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

Ma, Y.

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Marks, T. J.

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

Mattiussi, G.

Mattiussi, G. A.

Morizawa, Y.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd.56, 35–38 (Asahi Glass, 2006).

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Niall Tait, R.

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010).
[CrossRef]

Nikolajsen, T.

K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[CrossRef]

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated optical components utilizing long-range surface plasmon polaritons,” J. Lightwave Technol. 23, 413–422 (2005).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 455–459 (2004).
[CrossRef]

Oates, A. S.

A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors,” J. Appl. Phys. 79, 163–169(1996).
[CrossRef]

Oh, C.-H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Ono, M.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Palik, E. D.

E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solids (Academic, 1999).

Paniccia, M.

M. Paniccia, P. Flynn, and R. Reifenberger, “Scanning probe microscopy studies of electromigration in electroplated Au wires,” J. Appl. Phys. 73, 8189–8197 (1993).
[CrossRef]

Park, S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402–404 (2006).

Reifenberger, R.

M. Paniccia, P. Flynn, and R. Reifenberger, “Scanning probe microscopy studies of electromigration in electroplated Au wires,” J. Appl. Phys. 73, 8189–8197 (1993).
[CrossRef]

Rosenzveig, T.

T. Rosenzveig, P. G. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys. A 100, 341–346 (2010).
[CrossRef]

K. Leosson, T. Rosenzveig, P. G. Hermannsson, and A. Boltasseva, “Compact plasmonic variable optical attenuator,” Opt. Express 16, 15546–15552 (2008).
[CrossRef]

Sakane, Y.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Sato, H.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Scales, C.

Slavík, R.

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Smith, D. R.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Song, S. H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402–404 (2006).

Takayama, K.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd.56, 35–38 (Asahi Glass, 2006).

Takenobu, S.

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd.56, 35–38 (Asahi Glass, 2006).

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Tyler, T.

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Wark, A. W.

A. W. Wark, H. J. Lee, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Anal. Chem. 77, 5096–5100 (2005).
[CrossRef]

Won, H. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

Yao, H.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Zawadzki, C.

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

Zhao, Y. G.

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

Adv. Opt. Photon.

Anal. Chem.

A. W. Wark, H. J. Lee, and R. M. Corn, “Enzymatically amplified surface plasmon resonance imaging detection of DNA by exonuclease III digestion of DNA microarrays,” Anal. Chem. 77, 5096–5100 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. A

T. Rosenzveig, P. G. Hermannsson, A. Boltasseva, and K. Leosson, “Optimizing performance of plasmonic devices for photonic circuits,” Appl. Phys. A 100, 341–346 (2010).
[CrossRef]

Appl. Phys. Lett.

A. Kasry and W. Knoll, “Long range surface plasmon fluorescence spectroscopy,” Appl. Phys. Lett. 89, 101106 (2006).
[CrossRef]

Y. G. Zhao, W.-K. Lu, Y. Ma, S.-S. Kim, S. T. Ho, and T. J. Marks, “Polymer waveguides useful over a very wide wavelength range from the ultraviolet to infrared,” Appl. Phys. Lett. 77, 2961–2963 (2000).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88, 011110 (2006).
[CrossRef]

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett. 85, 455–459 (2004).
[CrossRef]

Electron. Lett.

S. Park and S. H. Song, “Polymeric variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42, 402–404 (2006).

IEEE J. Sel. Top. Quantum Electron.

A. Boltasseva and S. I. Bozhevolnyi, “Directional couplers using long-range surface plasmon-polariton waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1233–1241 (2006).
[CrossRef]

J. Appl. Phys.

I. Breukelaar, R. Charbonneau, and P. Berini, “Long-range surface plasmon-polariton mode cutoff and radiation in embedded strip waveguides,” J. Appl. Phys. 100, 043104 (2006).
[CrossRef]

M. Paniccia, P. Flynn, and R. Reifenberger, “Scanning probe microscopy studies of electromigration in electroplated Au wires,” J. Appl. Phys. 73, 8189–8197 (1993).
[CrossRef]

A. S. Oates, “Electromigration transport mechanisms in Al thin-film conductors,” J. Appl. Phys. 79, 163–169(1996).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

C. Chiu, E. Lisicka-Shrzek, R. Niall Tait, and P. Berini, “Fabrication of surface plasmon waveguides and devices in Cytop with integrated microfluidic channels,” J. Vac. Sci. Technol. B 28, 729–735 (2010).
[CrossRef]

Microelectron. Eng.

B. Agnarsson, J. Halldorsson, N. Arnfinnsdottir, S. Ingthorsson, T. Gudjonsson, and K. Leosson, “Fabrication of planar polymer waveguides for evanescent-wave sensing in aqueous environments,” Microelectron. Eng. 87, 56–61 (2010).
[CrossRef]

New J. Phys.

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” New J. Phys. 10, 105010 (2008).
[CrossRef]

A. Degiron, S.-Y. Cho, T. Tyler, N. M. Jokerst, and D. R. Smith, “Directional coupling between dielectric and long-range plasmon waveguides,” New J. Phys. 11, 015002 (2009).
[CrossRef]

Opt. Commun.

T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi, “In-line extinction modulator based on long-range surface plasmon polaritons,” Opt. Commun. 244, 455–459 (2005).
[CrossRef]

Opt. Express

Phys. Rev. B

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2000).
[CrossRef]

Plasmonics

J. Dostálek, A. Kasry, and W. Knoll, “Long range surface plasmons for observation of biomolecular binding events at metallic surfaces,” Plasmonics 2, 97–106 (2007).
[CrossRef]

Sens. Actuators B

R. Slavík and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Other

Y. Kuwana, S. Takenobu, K. Takayama, and Y. Morizawa, “High-performance and low-cost optical waveguide module made of perfluoropolymer,” Rep. Res. Lab. Asahi Glass Co. Ltd.56, 35–38 (Asahi Glass, 2006).

Amorphous Fluoropolymer CYTOP, Asahi Glass Co., Ltd, http://www.agc-cytop.com/ , January 2009.

Dupont, Teflon AF Properties, www.dupont.com .

S. Takenobu, Y. Kuwana, K. Takayama, Y. Sakane, M. Ono, H. Sato, N. Keil, W. Brinker, H. Yao, C. Zawadzki, Y. Morizawa, and N. Grote, “All-polymer 8×8 AWG wavelength router using ultra low loss polymer optical waveguide material (CYTOP),” presented at OFC/NFOEC, San Diego, CA, 24–28 Feb. 2008, paper JWA 32.

E. D. Palik and G. Ghosh, Electronic Handbook of Optical Constants of Solids (Academic, 1999).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Sketches of a (a) straight waveguide and (b) a single-output MZI showing dimensions; contact arms and pads, and electrical isolation gaps are also shown. (c) Microscope images of fabricated devices.

Fig. 2.
Fig. 2.

Block diagram of the experimental setup for the thermo-optic measurements.

Fig. 3.
Fig. 3.

Resistance versus time for voltage ramp experiments. Voltage ranges from 8 V to about 22 V (burnout), with a step of 0.1 V; each step lasts 10 s.

Fig. 4.
Fig. 4.

Resistance versus time for high current density experiments at (a) 70GA/m2 and (b) 36.5GA/m2.

Fig. 5.
Fig. 5.

Thermo-optic experimental results for a straight waveguide: (a) Optical power versus current for 30 consecutive measurements on the same straight waveguide. (b) Mosaic of mode outputs and their corresponding applied voltage and current.

Fig. 6.
Fig. 6.

Microscope images taken (a) before and (b) after the application of strong current showing physical changes on a waveguide.

Fig. 7.
Fig. 7.

Output optical power versus dissipated electrical power for an MZI 3.8 mm long with arms separated by 240 μm.

Fig. 8.
Fig. 8.

Output optical power versus dissipated electrical power for an MZI 3 mm long with arms separated by 140 μm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n(T)=n(T0)+(TT0)dndT,
R(T)=R(T0)[1+δ(TT0)],
Pout=Pine2(αLt+ρθ0+τ0)W12[1+Vcos(ϕD+ϕ0)]
V=1cosh(ΔαsL+Δρsθ+Δτs)
W=e(ΔαsL+Δρsθ+Δτs)cosh(ΔαsL+Δρsθ+Δτs).
Pout=Pine2(αLt+ρθ0+τ0)12[1+cos(ϕD+ϕ0)],
ϕD=2πLλnD,
PeL=CKT·ndC,
Pe=L(TT0)/Cst.
ϕD=2πλdndTCstPe.

Metrics