Abstract

The ability to detect nanoparticles in extremely dilute solutions in the presence of environmental noise is crucial for biosensing applications. In this paper we propose a scheme for detecting target nanoparticles through their scattering effects in a high-Q whispering gallery microcavity. The detection signal, defined as the total linewidth broadening of the two new split modes that appear upon nanoparticle adsorption, is highly sensitive and proportional to the nanoparticle concentration. Furthermore, this new method of detection eliminates the requirement for strict temperature control and is capable of distinguishing the signal from the biorecognitions (e.g., antibodies) initially attached to the resonator and that from the target nanoparticles (e.g., antigens).

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Detection and size measurement of individual hemozoin nanocrystals in aquatic environment using a whispering gallery mode resonator

Woosung Kim, Sahin Kaya Ozdemir, Jiangang Zhu, Faraz Monifi, Cevayir Coban, and Lan Yang
Opt. Express 20(28) 29426-29446 (2012)

Far-field single nanoparticle detection and sizing

Nan Zhang, Zhiyuan Gu, Shuai Liu, Yujie Wang, Shuai Wang, Zonghui Duan, Wenzhao Sun, Yun-Feng Xiao, Shumin Xiao, and Qinghai Song
Optica 4(9) 1151-1156 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription