Abstract

The optical limiting behavior of silver nanoparticles with different sizes and shapes is investigated and compared to the optical limiting performance of conventional carbon black suspension (CBS). The optical limiting behavior is characterized by means of nonlinear transmittance and scattered intensity measurements when submitted to nanosecond pulsed Nd:YAG lasers operating at the fundamental or the second harmonic wavelength. We found that the optical limiting effect is strongly particle size dependent and the best performance is achieved with the smaller particles. Moreover, it is shown that the surface plasmon resonance is not the main effect responsible for the nonlinear processes. A theoretical model based on the computation of the Mie scattering functions is exposed, and it is shown that the experimental results can be well explained from the calculations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Dengler, G. Ritt, and B. Eberle, “Optical limiting performance of nanoparticles in liquid and solid media,” Proc. SPIE 7481, 74810T (2009).
    [CrossRef]
  2. G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U (2009).
    [CrossRef]
  3. Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
    [CrossRef]
  4. R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
    [CrossRef]
  5. J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. Pure Appl. Opt. 11, 024001 (2009).
    [CrossRef]
  6. K. Mansour, E. W. van Stryland, and M. J. Soileau, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  7. D. G. McLean, R. L. Sutherland, M. C. Brant, and D. M. Brandelik, “Nonlinear absorption study of a C60-toluene solution,” Opt. Lett. 18, 858–860 (1993).
    [CrossRef]
  8. D. Vincent and J. Cruickshank, “Optical limiting with C60 and other fullerenes,” Appl. Opt. 36, 7794–7798 (1997).
    [CrossRef]
  9. C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008).
    [CrossRef]
  10. V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010).
    [CrossRef]
  11. S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
    [CrossRef]
  12. L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
    [CrossRef]
  13. M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
    [CrossRef]
  14. H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
    [CrossRef]
  15. G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901 (2006).
    [CrossRef]
  16. H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
    [CrossRef]
  17. L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
    [CrossRef]
  18. Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999).
    [CrossRef]
  19. K. G. Stamplecoskie and J. C. Scaiano, “Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles,” J. Am. Chem. Soc. 132, 1825–1827 (2010).
    [CrossRef]
  20. L. M. Liz-Marzan, “Nanomaterials: formation and color—review feature,” Mater. Today 7(2), 26–31 (2004).
    [CrossRef]
  21. S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
    [CrossRef]
  22. S. Barcikowski, M. Hustedt, and B. Chichkov, “Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,” Polimery 53, 657–662 (2008).
  23. P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011).
    [CrossRef]
  24. R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
    [CrossRef]
  25. J. Yang, R. C. Dennis, and D. K. Sardar, “Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates,” Mater. Res. Bull. 46, 1080–1084 (2011).
    [CrossRef]
  26. Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
    [CrossRef]
  27. X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
    [CrossRef]
  28. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
    [CrossRef]
  29. J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
    [CrossRef]
  30. K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).
  31. L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008).
    [CrossRef]
  32. R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
    [CrossRef]
  33. C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2, 636–639 (2006).
    [CrossRef]
  34. H. C. van de Hulst, Light scattering by small particles (Wiley, 1957).
  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  36. C. Märtzler, “Matlab functions for Mie scattering and absorption,” Research Report No. 2002–08 (University of Bern, 2002).
  37. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  38. W. Benenson, J. W. Harris, H. Stöcker, and H. Lutz, eds., Handbook of Physics (Verlag, 2002).
  39. M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
    [CrossRef]
  40. L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001).
    [CrossRef]
  41. R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
    [CrossRef]
  42. ANSI Z136.1-2007, American National Standard for the Safe Use of Lasers (Laser Institute of America, 2007).
  43. M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).
    [CrossRef]

2012 (1)

S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
[CrossRef]

2011 (3)

P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011).
[CrossRef]

J. Yang, R. C. Dennis, and D. K. Sardar, “Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates,” Mater. Res. Bull. 46, 1080–1084 (2011).
[CrossRef]

J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
[CrossRef]

2010 (2)

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010).
[CrossRef]

K. G. Stamplecoskie and J. C. Scaiano, “Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles,” J. Am. Chem. Soc. 132, 1825–1827 (2010).
[CrossRef]

2009 (3)

S. Dengler, G. Ritt, and B. Eberle, “Optical limiting performance of nanoparticles in liquid and solid media,” Proc. SPIE 7481, 74810T (2009).
[CrossRef]

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U (2009).
[CrossRef]

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. Pure Appl. Opt. 11, 024001 (2009).
[CrossRef]

2008 (4)

C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008).
[CrossRef]

L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008).
[CrossRef]

X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
[CrossRef]

S. Barcikowski, M. Hustedt, and B. Chichkov, “Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,” Polimery 53, 657–662 (2008).

2007 (2)

Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
[CrossRef]

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

2006 (5)

C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2, 636–639 (2006).
[CrossRef]

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901 (2006).
[CrossRef]

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

2005 (2)

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

2004 (1)

L. M. Liz-Marzan, “Nanomaterials: formation and color—review feature,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

2003 (1)

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

2002 (2)

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[CrossRef]

2001 (2)

L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001).
[CrossRef]

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

2000 (2)

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

1999 (3)

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999).
[CrossRef]

K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

1998 (1)

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).
[CrossRef]

1997 (1)

1993 (1)

1992 (1)

Anija, M.

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

Bakr, O. M.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010).
[CrossRef]

Barcikowski, S.

P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011).
[CrossRef]

S. Barcikowski, M. Hustedt, and B. Chichkov, “Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,” Polimery 53, 657–662 (2008).

Belloni, J.

L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Blau, W. J.

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. Pure Appl. Opt. 11, 024001 (2009).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Bozon-Verduraz, F.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[CrossRef]

Brandelik, D. M.

Brandes, G.

P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011).
[CrossRef]

Brant, M. C.

Cao, Y.

J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
[CrossRef]

Cao, Y. W.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

Chen, J.

Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
[CrossRef]

Chen, W. Z.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Chichkov, B.

S. Barcikowski, M. Hustedt, and B. Chichkov, “Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,” Polimery 53, 657–662 (2008).

Cook, D. E.

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Correia, R. B.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

Cruickshank, J.

Delaire, J.

L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Delouis, J. F.

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Dengler, S.

S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
[CrossRef]

S. Dengler, G. Ritt, and B. Eberle, “Optical limiting performance of nanoparticles in liquid and solid media,” Proc. SPIE 7481, 74810T (2009).
[CrossRef]

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U (2009).
[CrossRef]

Dennis, R. C.

J. Yang, R. C. Dennis, and D. K. Sardar, “Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates,” Mater. Res. Bull. 46, 1080–1084 (2011).
[CrossRef]

Dhoni, M. S.

L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008).
[CrossRef]

Dolgaev, S. I.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[CrossRef]

Dong, J.

J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
[CrossRef]

Du, C. M.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Du, Y.

C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008).
[CrossRef]

Dupont, J.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

Ebeling, G.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

Eberle, B.

S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
[CrossRef]

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U (2009).
[CrossRef]

S. Dengler, G. Ritt, and B. Eberle, “Optical limiting performance of nanoparticles in liquid and solid media,” Proc. SPIE 7481, 74810T (2009).
[CrossRef]

Elim, H. I.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Feneyrou, P.

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Feng, M.

C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008).
[CrossRef]

Feng, Y. P.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Francois, L.

L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Frysinger, G. S.

K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).

Ganeev, R. A.

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

Gao, Y. C.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Gelesky, M. A.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

Guduru, R.

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999).
[CrossRef]

Harsha, S. S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Henbest, K. B.

Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

Hollins, R. C.

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

Huang, R.

X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Hustedt, M.

S. Barcikowski, M. Hustedt, and B. Chichkov, “Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,” Polimery 53, 657–662 (2008).

Ji, W.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Jin, R. C.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

Kelly, K. L.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

Ketchel, B. P.

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).
[CrossRef]

Kübel, C.

S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
[CrossRef]

Lee, J. Y.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Li, Y. L.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Liberman, V.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010).
[CrossRef]

Lin, J. Y.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Liu, S. T.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Liu, X.

X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
[CrossRef]

Liz-Marzan, L. M.

L. M. Liz-Marzan, “Nanomaterials: formation and color—review feature,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

Machado, G.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

Magno, W. C.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

Mansour, K.

Martin, R. B.

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

Märtzler, C.

C. Märtzler, “Matlab functions for Mie scattering and absorption,” Research Report No. 2002–08 (University of Bern, 2002).

McLean, D. G.

Meziani, M. J.

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Mi, J.

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Miller, M. J.

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).
[CrossRef]

Mirkin, C. A.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

Morais, J.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

Mostafavi, M.

L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Mott, A. G.

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).
[CrossRef]

Murphy, C. J.

C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2, 636–639 (2006).
[CrossRef]

Nair, A. S.

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

Nashold, K. M.

K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).

Orendorff, C. J.

C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2, 636–639 (2006).
[CrossRef]

Pan, C.

X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
[CrossRef]

Pan, H.

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Pathak, P.

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Perera, S.

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Philip, R.

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

Polavarapu, L.

L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008).
[CrossRef]

Porel, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Pradeep, T.

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

Qu, L.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Radhakrishnan, T. P.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Rao, D. N.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Riggs, J. E.

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999).
[CrossRef]

Ritt, G.

S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
[CrossRef]

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U (2009).
[CrossRef]

S. Dengler, G. Ritt, and B. Eberle, “Optical limiting performance of nanoparticles in liquid and solid media,” Proc. SPIE 7481, 74810T (2009).
[CrossRef]

Rollins, H. W.

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999).
[CrossRef]

Rothschild, M.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010).
[CrossRef]

Ryasnyansky, A. I.

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

Sadilek, M.

Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
[CrossRef]

Sardar, D. K.

J. Yang, R. C. Dennis, and D. K. Sardar, “Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates,” Mater. Res. Bull. 46, 1080–1084 (2011).
[CrossRef]

Sau, T. K.

C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2, 636–639 (2006).
[CrossRef]

Scaiano, J. C.

K. G. Stamplecoskie and J. C. Scaiano, “Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles,” J. Am. Chem. Soc. 132, 1825–1827 (2010).
[CrossRef]

Schatz, G. C.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

Schwenke, A.

S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
[CrossRef]

P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011).
[CrossRef]

Shafeev, G. A.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[CrossRef]

Sharpless, R. L.

K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).

Simakin, A. V.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[CrossRef]

Singh, N.

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

Singh, S.

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Soileau, M. J.

Song, Y. L.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Stamplecoskie, K. G.

K. G. Stamplecoskie and J. C. Scaiano, “Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles,” J. Am. Chem. Soc. 132, 1825–1827 (2010).
[CrossRef]

Stellacci, F.

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010).
[CrossRef]

Sun, W. F.

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901 (2006).
[CrossRef]

Sun, Y. P.

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999).
[CrossRef]

Sutherland, R. L.

Thomas, J.

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

Tian, J.

J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
[CrossRef]

Tom, R. T.

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

Umpierre, A. P.

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light scattering by small particles (Wiley, 1957).

van Stryland, E. W.

Vincent, D.

Voronov, V. V.

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[CrossRef]

Voss, J. M.

K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).

Wagener, P.

P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011).
[CrossRef]

Walter, D. P.

K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).

Wang, G.

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901 (2006).
[CrossRef]

Wang, J.

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. Pure Appl. Opt. 11, 024001 (2009).
[CrossRef]

Wang, X.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Washio, I.

Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
[CrossRef]

Wei Ji, W.

L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Xia, Y.

Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
[CrossRef]

Xiong, Y.

Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
[CrossRef]

Xu, O.

L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008).
[CrossRef]

Yang, J.

J. Yang, R. C. Dennis, and D. K. Sardar, “Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates,” Mater. Res. Bull. 46, 1080–1084 (2011).
[CrossRef]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

Yang, W.

J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
[CrossRef]

Zhan, H.

C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008).
[CrossRef]

Zhang, F.

X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
[CrossRef]

Zhang, X.

J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
[CrossRef]

Zheng, C.

C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008).
[CrossRef]

Zheng, J. G.

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

Zhu, D. B.

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Zhu, J.

X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
[CrossRef]

Ang. Chem. Int. Ed. (1)

Y. Xiong, I. Washio, J. Chen, M. Sadilek, and Y. Xia, “Trimeric clusters of silver in aqueous AgNO3 solutions and their role as nuclei in forming triangular nanoplates of silver,” Ang. Chem. Int. Ed. 46, 4917–4921 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. A. Ganeev and A. I. Ryasnyansky, “Nonlinear optical characteristics of nanoparticles in suspensions and solid matrices,” Appl. Phys. B 84, 295–302 (2006).
[CrossRef]

Appl. Phys. Let. (1)

L. Polavarapu, O. Xu, M. S. Dhoni, and W. Wei Ji, “Optical limiting properties of silver nanoprisms,” Appl. Phys. Let. 92, 263110 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

C. Zheng, Y. Du, M. Feng, and H. Zhan, “Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites,” Appl. Phys. Lett. 93, 143108 (2008).
[CrossRef]

H. I. Elim, J. Yang, J. Y. Lee, J. Mi, and W. Ji, “Optical limiting studies of new carbon nanocomposites and amorphous SixNy or amorphous SiC coated multi-walled carbon nanotubes,” Appl. Phys. Lett. 88, 083107 (2006).
[CrossRef]

H. Pan, W. Z. Chen, Y. P. Feng, W. Ji, and J. Y. Lin, “Optical Limiting of Metal Nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[CrossRef]

Appl. Surf. Sci. (1)

S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev, and F. Bozon-Verduraz, “Nanoparticles produced by laser ablation of solids in liquid environment,” Appl. Surf. Sci. 186, 546–551 (2002).
[CrossRef]

Chem. Mater. (1)

S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in-situ synthesis, free standing films with highly monodisperse silver nanoparticles and optical limiting,” Chem. Mater. 17, 9–12 (2005).
[CrossRef]

Chem. Phys. Lett. (2)

M. Anija, J. Thomas, N. Singh, A. S. Nair, R. T. Tom, T. Pradeep, and R. Philip, “Nonlinear light transmission through oxide-protected Au and Ag nanoparticles: an investigation in the nanosecond domain,” Chem. Phys. Lett. 380, 223–229 (2003).
[CrossRef]

L. Qu, C. M. Du, Y. L. Song, X. Wang, Y. C. Gao, S. T. Liu, Y. L. Li, and D. B. Zhu, “Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands,” Chem. Phys. Lett. 356, 403–408 (2002).
[CrossRef]

Cryst. Growth Des. (1)

X. Liu, F. Zhang, R. Huang, C. Pan, and J. Zhu, “Capping modes in PVP-directed silver nanocrystal growth: multi-twinned nanorods versus single-crystalline nano-hexapods,” Cryst. Growth Des. 8, 1916–1923 (2008).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

R. C. Hollins, “Materials for optical limiters,” Curr. Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

J. Am. Chem. Soc. (2)

K. G. Stamplecoskie and J. C. Scaiano, “Light emitting diode irradiation can control the morphology and optical properties of silver nanoparticles,” J. Am. Chem. Soc. 132, 1825–1827 (2010).
[CrossRef]

M. A. Gelesky, A. P. Umpierre, G. Machado, R. B. Correia, W. C. Magno, J. Morais, G. Ebeling, and J. Dupont, “Laser-induced fragmentation of transition metal nanoparticles in ionic liquids,” J. Am. Chem. Soc. 127, 4588–4589 (2005).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

Y. P. Sun, J. E. Riggs, K. B. Henbest, and R. B. Martin, “Nanomaterials as optical limiters,” J. Nonlinear Opt. Phys. Mater. 9, 481–503 (2000).
[CrossRef]

J. Opt. (2)

V. Liberman, M. Rothschild, O. M. Bakr, and F. Stellacci, “Optical limiting with complex plasmonic Nanoparticles,” J. Opt. 12, 065001 (2010).
[CrossRef]

S. Dengler, C. Kübel, A. Schwenke, G. Ritt, and B. Eberle, “Near- and off-resonant optical limiting properties of gold—silver alloy nanoparticles for intense nanosecond laser pulses,” J. Opt. 14, 075203 (2012).
[CrossRef]

J. Opt. Pure Appl. Opt. (1)

J. Wang and W. J. Blau, “Inorganic and hybrid nanostructures for optical limiting,” J. Opt. Pure Appl. Opt. 11, 024001 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (3)

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, “Optical Limitation induced by Gold Clusters. 1. Size Effect,” J. Phys. Chem. B 104, 6133–6137 (2000).
[CrossRef]

Y. P. Sun, J. E. Riggs, H. W. Rollins, and R. Guduru, “Strong optical limiting of silver-containing nanocrystalline particles in stable suspensions,” J. Phys. Chem. B 103, 77–82 (1999).
[CrossRef]

G. Wang and W. F. Sun, “Optical limiting of gold nanoparticle aggregates induced by electrolytes,” J. Phys. Chem. B 110, 20901 (2006).
[CrossRef]

Mater. Lett. (1)

J. Dong, X. Zhang, Y. Cao, W. Yang, and J. Tian, “Shape dependence of nonlinear optical behaviors of gold nanoparticles,” Mater. Lett. 65, 2665–2668 (2011).
[CrossRef]

Mater. Res. Bull. (1)

J. Yang, R. C. Dennis, and D. K. Sardar, “Room-temperature synthesis of flowerlike Ag nanostructures consisting of single crystalline Ag nanoplates,” Mater. Res. Bull. 46, 1080–1084 (2011).
[CrossRef]

Mater. Today (1)

L. M. Liz-Marzan, “Nanomaterials: formation and color—review feature,” Mater. Today 7(2), 26–31 (2004).
[CrossRef]

Nonlinear Opt. (1)

K. M. Nashold, D. P. Walter, J. M. Voss, G. S. Frysinger, and R. L. Sharpless, “Comparing the scattering process in particle suspensions in liquids and gases for use as optical limiters,” Nonlinear Opt. 21, 353–376 (1999).

Opt. Lett. (1)

Opt. Mater. (1)

R. B. Martin, M. J. Meziani, P. Pathak, J. E. Riggs, D. E. Cook, S. Perera, and Y. P. Sun, “Optical limiting of silver-containing nanoparticles,” Opt. Mater. 29, 788–793 (2007).
[CrossRef]

Phys. Chem. Chem. Phys. (2)

P. Wagener, G. Brandes, A. Schwenke, and S. Barcikowski, “Impact of in-situ polymer coating on particle dispersion into solid laser-generated nanocomposites,” Phys. Chem. Chem. Phys. 13, 5120–5126 (2011).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, and J. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys. 3, 4965–4971 (2001).
[CrossRef]

Polimery (1)

S. Barcikowski, M. Hustedt, and B. Chichkov, “Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers,” Polimery 53, 657–662 (2008).

Proc. SPIE (3)

S. Dengler, G. Ritt, and B. Eberle, “Optical limiting performance of nanoparticles in liquid and solid media,” Proc. SPIE 7481, 74810T (2009).
[CrossRef]

G. Ritt, S. Dengler, and B. Eberle, “Protection of optical systems against laser radiation,” Proc. SPIE 7481, 74810U (2009).
[CrossRef]

M. J. Miller, A. G. Mott, and B. P. Ketchel, “General optical limiting requirements,” Proc. SPIE 3472, 24–29 (1998).
[CrossRef]

Science (1)

R. C. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Single-step synthesis and stabilization of metal nanoparticles in aqueouspluronic block copolymer solutions at ambient temperature,” Science 294, 1901–1903 (2001).
[CrossRef]

Small (1)

C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-dependent plasmon-resonant gold nanoparticles,” Small 2, 636–639 (2006).
[CrossRef]

Other (6)

H. C. van de Hulst, Light scattering by small particles (Wiley, 1957).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

C. Märtzler, “Matlab functions for Mie scattering and absorption,” Research Report No. 2002–08 (University of Bern, 2002).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

W. Benenson, J. W. Harris, H. Stöcker, and H. Lutz, eds., Handbook of Physics (Verlag, 2002).

ANSI Z136.1-2007, American National Standard for the Safe Use of Lasers (Laser Institute of America, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experimental setup used to study the polar scattering properties. The denoted components are explained in the previous section.

Fig. 2.
Fig. 2.

Experimental setup used to study the optical limiting behavior of solid and liquid samples. The denoted components are explained in the previous section.

Fig. 3.
Fig. 3.

SEM images of the different Ag nanoparticles. (a) Ag nanoplates, (b) Ag multiplaned, (c) Ag flowers, and (d) Ag spheres (laser ablated). The scale bar in each subfigure represents 200 nm.

Fig. 4.
Fig. 4.

Absorption spectra of the suspensions in ethyl alcohol. The suspensions are composed of Ag nanoplates, Ag multiplaned, Ag nanoflowers, Ag nanospheres, and CBS.

Fig. 5.
Fig. 5.

Normalized transmittance as a function of the input laser energy and input fluence in a log–log scale. Silver nanoparticles and CBSs in ethyl alcohol at 532 nm (upper graph) and 1064 nm (lower graph).

Fig. 6.
Fig. 6.

Semilog plots of the angular distribution of the scattered intensity at λ=532nm for the Ag nanoplates, Ag multiplaned, Ag flowers, laser ablated Ag nanospheres, and CBS at 3 different incident fluence levels: Finc=3.5J/cm2, Finc=9.6J/cm2, and Finc=39J/cm2. The scattering signature of ethyl alcohol is given at Finc=3.5J/cm2. The laser radiation is incident from the bottom to the top.

Fig. 7.
Fig. 7.

Semilog plot of the angular distribution of the scattered intensity at λ=1064nm for the Ag nanoplates, Ag multiplaned, Ag flowers, laser ablated Ag nanospheres, and CBS at Finc=7J/cm2. The laser radiation is incident from the bottom to the top.

Fig. 8.
Fig. 8.

Semilog plot of the scattered intensity as a function of the incident fluence at a laser wavelength of 532 nm for the Ag nanoplates, Ag multiplaned, Ag flowers, laser ablated Ag nanospheres, and CBS. (a) backscattering measurements, (b) forward-scattering measurements.

Fig. 9.
Fig. 9.

Semilog plot of the calculated angular scattering function S1 for 60 and 580 nm Ag spheres as well as for the 200 nm CBS spheres.

Fig. 10.
Fig. 10.

Semilog plot of the angular distribution of the scattered intensity at λ=532nm for the Ag flowers rescaled in an appropriate manner to see the backscattered radiation more precisely. Input fluences are Finc=9.6J/cm2 and Finc=39J/cm2. The laser radiation is incident from the bottom to the top.

Tables (2)

Tables Icon

Table 1. Particle Sizes as Measured by DLS

Tables Icon

Table 2. Input Parameters and Calculated Scattering Cross Sections and Efficiencies for r=60nm and r=580nm Ag Spheres and for r=200nm CBS Spheres

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σext=σabs+σscat,
Ispol=I0·1r2·σspol.
σspol=λ24π2·S1
S1(cosθ)=|n=12n+1n(n+1)[anπn+bnτn]|2.

Metrics