Abstract

Potassium dihydrogen phosphate (KDP) crystals used in high power laser systems require high figure accuracy. Deformation caused by vacuum suction is one of the most significant factors affecting the final surface figure accuracy. It is difficult to compensate the error caused by the suction deformation when using a single point diamond flycutting method. This paper presents a spiral turning method to machine KDP crystals on a common ultraprecision lathe, and the transfer rule and compensation theory of the suction deformation error are studied. The in situ measurement of deformation error is accomplished with a displacement test apparatus, which can acquire submicron precision, and then compensates for it by utilizing the three-axis servo control technology. Meanwhile, cutting parameters are strictly controlled to achieve full-aperture ductile material removal. The compensation experiments for both reflected and transmitted wavefront error are carried out on a Φ270mm KDP crystal and the transmission wavefront error of 0.591λ (peak-to-valley, λ=632.8nm) and 25nm/cm (gradient root-mean-square) are obtained after one compensation with full-aperture surface roughness of about 2 nm RMS.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Xu and J. Wang, “Analysis of the influence of vacuum chucking on the distortion of the KDP crystal,” Proc. SPIE 4231, 464–468 (2000).
    [CrossRef]
  2. B. A. Fuchs, P. P. Hed, and P. C. Baker, “Fine diamond turning of KDP crystals,” Appl. Opt. 25, 1733–1735 (1986).
    [CrossRef]
  3. P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
    [CrossRef]
  4. N. Yoshiharu, K. Masanori, and N. Masahiro, “Single point diamond turning of KDP inorganic nonlinear optical crystals for laser fusion,” J. Jpn. Soc. Precis. Eng. 64, 1487–1491 (1998).
    [CrossRef]
  5. T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” Trans. ASME 113, 184–189 (1991).
    [CrossRef]
  6. H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

2011

H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

2000

Q. Xu and J. Wang, “Analysis of the influence of vacuum chucking on the distortion of the KDP crystal,” Proc. SPIE 4231, 464–468 (2000).
[CrossRef]

1998

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
[CrossRef]

N. Yoshiharu, K. Masanori, and N. Masahiro, “Single point diamond turning of KDP inorganic nonlinear optical crystals for laser fusion,” J. Jpn. Soc. Precis. Eng. 64, 1487–1491 (1998).
[CrossRef]

1991

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” Trans. ASME 113, 184–189 (1991).
[CrossRef]

1986

Baker, P. C.

Bifano, T. G.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” Trans. ASME 113, 184–189 (1991).
[CrossRef]

Chabassier, G.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
[CrossRef]

Chen, H.

H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

Chomont, C.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
[CrossRef]

Dai, Y.

H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

Dow, T. A.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” Trans. ASME 113, 184–189 (1991).
[CrossRef]

Duchesne, J.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
[CrossRef]

Dumont, P.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
[CrossRef]

Fuchs, B. A.

Hed, P. P.

Lahaye, P.

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
[CrossRef]

Masahiro, N.

N. Yoshiharu, K. Masanori, and N. Masahiro, “Single point diamond turning of KDP inorganic nonlinear optical crystals for laser fusion,” J. Jpn. Soc. Precis. Eng. 64, 1487–1491 (1998).
[CrossRef]

Masanori, K.

N. Yoshiharu, K. Masanori, and N. Masahiro, “Single point diamond turning of KDP inorganic nonlinear optical crystals for laser fusion,” J. Jpn. Soc. Precis. Eng. 64, 1487–1491 (1998).
[CrossRef]

Peng, X.

H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

Scattergood, R. O.

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” Trans. ASME 113, 184–189 (1991).
[CrossRef]

Wang, J.

H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

Q. Xu and J. Wang, “Analysis of the influence of vacuum chucking on the distortion of the KDP crystal,” Proc. SPIE 4231, 464–468 (2000).
[CrossRef]

Xu, Q.

Q. Xu and J. Wang, “Analysis of the influence of vacuum chucking on the distortion of the KDP crystal,” Proc. SPIE 4231, 464–468 (2000).
[CrossRef]

Yoshiharu, N.

N. Yoshiharu, K. Masanori, and N. Masahiro, “Single point diamond turning of KDP inorganic nonlinear optical crystals for laser fusion,” J. Jpn. Soc. Precis. Eng. 64, 1487–1491 (1998).
[CrossRef]

Zheng, Z.

H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

Appl. Opt.

J. Jpn. Soc. Precis. Eng.

N. Yoshiharu, K. Masanori, and N. Masahiro, “Single point diamond turning of KDP inorganic nonlinear optical crystals for laser fusion,” J. Jpn. Soc. Precis. Eng. 64, 1487–1491 (1998).
[CrossRef]

J. Synth. Cryst.

H. Chen, J. Wang, Y. Dai, Z. Zheng, and X. Peng, “Research on critical cutting thickness of KDP crystals by spirally grooving,” J. Synth. Cryst. 40, 22–26 (2011).

Proc. SPIE

Q. Xu and J. Wang, “Analysis of the influence of vacuum chucking on the distortion of the KDP crystal,” Proc. SPIE 4231, 464–468 (2000).
[CrossRef]

P. Lahaye, C. Chomont, P. Dumont, J. Duchesne, and G. Chabassier, “Using a design of experiment method to improve KDP crystal machining process,” Proc. SPIE 3492, 814–820 (1998).
[CrossRef]

Trans. ASME

T. G. Bifano, T. A. Dow, and R. O. Scattergood, “Ductile-regime grinding: a new technology for machining brittle materials,” Trans. ASME 113, 184–189 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of flycutting method.

Fig. 2.
Fig. 2.

Schematic of spiral turning method.

Fig. 3.
Fig. 3.

Scallop shape of (001) KDP surface.

Fig. 4.
Fig. 4.

Full-aperture ductile turning of KDP surface.

Fig. 5.
Fig. 5.

Schematic of free-form surface error compensation.

Fig. 6.
Fig. 6.

Photo of in situ measurement system.

Fig. 7.
Fig. 7.

Curve of fixed point measurement.

Fig. 8.
Fig. 8.

Schematic of compensation procedure.

Fig. 9.
Fig. 9.

Reflected wavefront error distribution: (a) Initial wavefront error and (b) in situ wavefront error.

Fig. 10.
Fig. 10.

Distributions of reflected wavefront error to be compensated (a) before treatment and (b) after treatment.

Fig. 11.
Fig. 11.

Final reflected wavefront error after once compensation.

Fig. 12.
Fig. 12.

Transmitted wavefront error before and after one compensation: (a) before compensation and (b) after compensation.

Fig. 13.
Fig. 13.

GRMS error before and after once compensation: (a) before compensation and (b) after compensation.

Fig. 14.
Fig. 14.

Surface roughness topography.

Tables (2)

Tables Icon

Table 1. Nominal Accuracy of Keyence LK-G10

Tables Icon

Table 2. Surface Roughness Results

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dc=ψ(EwHw)(KICHw)2,
Zsuc_err=Zin situZinit.
Zfinal=Zsuc_err.
Zcomp=Zfinal=Zsuc_err=Zin situZinit,
Zinit_r=Zinit.
Zcomp_r=Zin situZinit_r.
Zinit=Zinit_t/(n1),
Zcomp_t=Zin situ+Zinit_t/(n1).

Metrics