Abstract

Ultrasound modulated optical tomography (USMOT) can image the optical properties of a scattering medium at a spatial resolution approaching that of ultrasound (US). A lock-in parallel speckle detection technique is proposed to detect pulsed US modulated light using a multipixel detector. The frequency components of the pass band match those of the US pulse train and provide efficient detection. The modulation depth is extracted by taking the difference between a pair of speckle patterns modulated by a pair of phase-inversed US bursts. Modification to pulse inversion mode enables the second harmonic US modulation due to nonlinear US propagation to be detected.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [CrossRef]
  2. S. Leveque-Fort, “Three-dimensional acoustic-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2000).
    [CrossRef]
  3. J. Li and L. V. Wang, “Methods for parallel-detection-based ultrasound-modulated optical tomography,” Appl. Opt. 412079–2084 (2002).
    [CrossRef]
  4. A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
    [CrossRef]
  5. S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
    [CrossRef]
  6. M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
    [CrossRef]
  7. L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
    [CrossRef]
  8. Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
    [CrossRef]
  9. R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46, 1615–1623 (2007).
    [CrossRef]
  10. H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
    [CrossRef]
  11. B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
    [CrossRef]
  12. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886–2888 (2008).
    [CrossRef]
  13. S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
    [CrossRef]
  14. J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41, 6030–6035 (2002).
    [CrossRef]

2012

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

2008

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886–2888 (2008).
[CrossRef]

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

2007

R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46, 1615–1623 (2007).
[CrossRef]

2005

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

2004

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

2003

A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
[CrossRef]

2002

J. Li and L. V. Wang, “Methods for parallel-detection-based ultrasound-modulated optical tomography,” Appl. Opt. 412079–2084 (2002).
[CrossRef]

J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41, 6030–6035 (2002).
[CrossRef]

2000

S. Leveque-Fort, “Three-dimensional acoustic-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2000).
[CrossRef]

1999

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

1997

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

1983

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef]

Atlan, M.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

Baker, A. C.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

Bentzen, S. M.

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef]

Boccara, A. C.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

DiMarzio, C. A.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Duncan, D. D.

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886–2888 (2008).
[CrossRef]

Forget, B. C.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

Gross, M.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

Hemmer, P.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Humphrey, V. F.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

Kim, C.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46, 1615–1623 (2007).
[CrossRef]

Kirkpatrick, S. J.

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886–2888 (2008).
[CrossRef]

Ku, G.

J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41, 6030–6035 (2002).
[CrossRef]

Lebec, M.

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Lev, A.

A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
[CrossRef]

Leveque, S.

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Leveque-Fort, S.

S. Leveque-Fort, “Three-dimensional acoustic-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2000).
[CrossRef]

Li, J.

J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41, 6030–6035 (2002).
[CrossRef]

J. Li and L. V. Wang, “Methods for parallel-detection-based ultrasound-modulated optical tomography,” Appl. Opt. 412079–2084 (2002).
[CrossRef]

Li, Y.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Mather, M. L.

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

Morgan, S. P.

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

Murray, T. W.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Ramaz, F.

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

Roy, R. A.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Ruan, H.

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

Saint-Jalmes, H.

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

Sakadzic, S.

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

Sfez, B. G.

A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
[CrossRef]

Sui, L.

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

Wagner, K. H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Wang, L. V.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46, 1615–1623 (2007).
[CrossRef]

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41, 6030–6035 (2002).
[CrossRef]

J. Li and L. V. Wang, “Methods for parallel-detection-based ultrasound-modulated optical tomography,” Appl. Opt. 412079–2084 (2002).
[CrossRef]

Ward, B.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

Wells-Gray, E. M.

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886–2888 (2008).
[CrossRef]

Zemp, R. J.

R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46, 1615–1623 (2007).
[CrossRef]

Zhang, H.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

Appl. Opt.

S. Leveque-Fort, “Three-dimensional acoustic-optic imaging in biological tissues with parallel signal processing,” Appl. Opt. 40, 1029–1036 (2000).
[CrossRef]

J. Li and L. V. Wang, “Methods for parallel-detection-based ultrasound-modulated optical tomography,” Appl. Opt. 412079–2084 (2002).
[CrossRef]

L. Sui, R. A. Roy, C. A. DiMarzio, and T. W. Murray, “Imaging in diffuse media with pulsed-ultrasound-modulated light and the photorefractive effect,” Appl. Opt. 44, 4041–4048 (2005).
[CrossRef]

R. J. Zemp, C. Kim, and L. V. Wang, “Ultrasound-modulated optical tomography with intense acoustic bursts,” Appl. Opt. 46, 1615–1623 (2007).
[CrossRef]

J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt. 41, 6030–6035 (2002).
[CrossRef]

Appl. Phys. Lett.

Y. Li, H. Zhang, C. Kim, K. H. Wagner, P. Hemmer, and L. V. Wang, “Pulsed ultrasound-modulated optical tomography using spectral-hole burning as a narrowband spectral filter,” Appl. Phys. Lett. 93, 011111 (2008).
[CrossRef]

J. Acoust. Soc. Am.

B. Ward, A. C. Baker, and V. F. Humphrey, “Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound,” J. Acoust. Soc. Am. 101, 143–154 (1997).
[CrossRef]

Med. Phys.

S. M. Bentzen, “Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function,” Med. Phys. 10, 579–581 (1983).
[CrossRef]

Opt. Lett.

S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
[CrossRef]

S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett. 33, 2886–2888 (2008).
[CrossRef]

H. Ruan, M. L. Mather, and S. P. Morgan, “Pulse inversion ultrasound modulated optical tomography,” Opt. Lett. 37, 1658–1660 (2012).
[CrossRef]

A. Lev and B. G. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
[CrossRef]

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004).
[CrossRef]

M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M. Gross, “Pulsed acousto-optic imaging in dynamic scattering media with heterodyne parallel speckle detection,” Opt. Lett. 30, 1360–1362 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Single cycle US arriving at the US focal zone after delay; (a) 0 phase frame; (b) π phase frame; (c) synchronized laser pulses (Ta, US pulse duration; Ti, interval time between pulses; Tp, laser pulse duration; Te, camera exposure time).

Fig. 2.
Fig. 2.

Simulated data, (a) power spectrum of the sequence of US bursts with pulse frequency 2.25 MHz, repetition rate 100 kHz; (b) lock-in detection harmonic response with 111 ns laser pulse duration, 100 kHz repetition rate; (c) same as (b) but with a pulse duration of 360 ns.

Fig. 3.
Fig. 3.

Single cycle US arriving at the US focal zone after delay; (a) 0π phase frame; (b) π/23π/2 phase frame; (c) synchronized laser pulses.

Fig. 4.
Fig. 4.

(a) Pass band of the lock-in detection; (b) zoom in version of (a); (c) power spectra of the nonlinear US pulse train showing fundamental (left-hand side) and second harmonic (right-hand side); (d) zoom in version of (c). The dashed vertical lines in (b) and (d) indicate the second harmonic components.

Fig. 5.
Fig. 5.

System setup.

Fig. 6.
Fig. 6.

Measured US pulses at four phases and the corresponding spectra. (a) Phase 0; (b) phase π; (c) sum of (a) and (b); (d) phase π/2; (e) 3π/2; (f) sum of (d) and (e); (g)–(i) spectra of (a)–(c).

Fig. 7.
Fig. 7.

(a) Objects embedded into the scattering gel; (b) image of pulsed US modulation (AC image); (c) light intensity image (DC image).

Fig. 8.
Fig. 8.

(a) Line scans of an optically absorbing edge by detecting DC, fundamental, and second harmonic signals. (b) Line spread functions based on the fitting to the edge response functions; FWHM are 9.26 mm (DC), 4.02 mm (fundamental), and 2.43 mm (second harmonic).

Fig. 9.
Fig. 9.

SNR for different laser pulse durations for the signal spectrum shown in Fig. 2(a). A modulation depth=106 and shot noise limited detection is assumed.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

S0(t)=n=1Ancos(nω0t)+Bnsin(nω0t),
An=12π[1b/a+n+1b/an][1cos(2πnab)];
Bn=12π[1b/a+n+1b/an]sin(2πnab);
S1(t)=n=1Ancos(nω0t+π)+Bnsin(nω0t+π).
M=(I0,iI1,i)2/2(I0,i+I1,i)/2,
D(t)=ab+n=1Cncos(ω0nt),
Cn=2nπsin(ω0na2)
I(t)=Idc+IacS0(t,φ),
S0(t,φ)=n=1Ancos(nω0t+φ)+Bnsin(nω0t+φ),
I0,i=0TeI(t)D(t)dt,
I0,i=0Te[Idc+IacS0(t,φ)][ab+n=1Cncos(ω0nt)]dt,
I0,i=IdcabTe+0Te[IacS0(t,φ)n=1Cncos(ω0nt)]dt,
I0,i=IdcabTe+Iac0Tem=1n=1Cmcos(mω0t)[Ancos(nω0t+φ)+Bnsin(nω0t+φ)]dt,
I0,i=IdcabTe+Iac0Ten=1[AnCncos(nω0t)cos(nω0t+φ)+BnCncos(nω0t)sin(nω0t+φ)]dt,
I0,i=IdcabTe+Iac2Ten=1[AnCncos(φ)+BnCnsin(φ)].
I1,i=IdcabTeIac2Ten=1[AnCncos(φ)+BnCnsin(φ)].
I0,iI1,i=IacTen=1[AnCncos(φ)+BnCnsin(φ)],
(I0,iI1,i)2=12Iac2Te2[(n=1AnCn)2+(n=1BnCn)2],
Iac(I0,iI1,i)2.

Metrics