Abstract

Although integral Fourier holography has shown many promising advantages in real 3D display, reconstructed holographic image quality is still limited by restricted information capacity and aliasing and overlapping due to insufficient sampling in both the space and spatial frequency domains. In this paper, the space-bandwidth product of integral Fourier holographic imagery is derived to characterize its information transfer property. Furthermore, based on the above analysis, we propose the aliasing and overlapping elimination methods by estimating intermediate elemental images and orthographic projection views as virtual samplings, to improve the sampling rate in the space and spatial frequency domains. Finally, simulations and experiments are carried out to verify the feasibility of the proposed methods. The results show that our methods can effectively eliminate aliasing and overlapping, and enhance the reconstructed holographic image quality significantly.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T.-C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006), Chap. 1.
  2. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
    [CrossRef]
  3. J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
    [CrossRef]
  4. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
    [CrossRef]
  5. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
    [CrossRef]
  6. K. Wakunami, M. Yamaguchi, and B. Javidi, “High resolution 3-D holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37, 5103–5105 (2012).
    [CrossRef]
  7. N. T. Shaked, J. Rosen, and A. Stern, “Integral holography: white-light single-shot hologram acquisition,” Opt. Express 15, 5754–5760 (2007).
    [CrossRef]
  8. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48, H120–H136 (2009).
    [CrossRef]
  9. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, H87–H115 (2011).
    [CrossRef]
  10. M.-S. Kim, G. Baasantseren, N. Kim, and J.-H. Park, “Hologram generation of 3D objects using multiple orthographic view images,” J. Opt. Soc. Korea 12, 269–274 (2008).
    [CrossRef]
  11. J.-H. Park, M.-S. Kim, G. Baasantseren, and N. Kim, “Fresnel and Fourier hologram generation using orthographic projection images,” Opt. Express 17, 6320–6334 (2009).
    [CrossRef]
  12. N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18, 2152–2167 (2010).
    [CrossRef]
  13. N. Chen, J.-H. Park, and N. Kim, “Resolution analysis of Fourier hologram using integral imaging and its enhancement,” Proc. SPIE 7618, 761809 (2010).
    [CrossRef]
  14. B. Katz, N. T. Shaked, and J. Rosen, “Synthesizing computer generated holograms with reduced number of perspective projections,” Opt. Express 15, 13250–13255 (2007).
    [CrossRef]
  15. J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004 (2006).
    [CrossRef]
  16. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16, 8800–8813 (2008).
    [CrossRef]
  17. A. W. Lohmann, “Space-bandwidth product of optical signals and system,” J. Opt. Soc. Am. A 13, 470–473 (1996).
    [CrossRef]
  18. D. Claus, D. lliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50, H116–H127 (2011).
    [CrossRef]
  19. T. Georgiev and A. Lumsdaine, “Reducing plenoptic camera artifacts,” Comput. Graph. Forum 29, 1955–1968 (2010).
    [CrossRef]

2013 (2)

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[CrossRef]

J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
[CrossRef]

2012 (1)

2011 (3)

2010 (3)

T. Georgiev and A. Lumsdaine, “Reducing plenoptic camera artifacts,” Comput. Graph. Forum 29, 1955–1968 (2010).
[CrossRef]

N. Chen, J.-H. Park, and N. Kim, “Parameter analysis of integral Fourier hologram and its resolution enhancement,” Opt. Express 18, 2152–2167 (2010).
[CrossRef]

N. Chen, J.-H. Park, and N. Kim, “Resolution analysis of Fourier hologram using integral imaging and its enhancement,” Proc. SPIE 7618, 761809 (2010).
[CrossRef]

2009 (3)

2008 (2)

2007 (2)

2006 (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004 (2006).
[CrossRef]

1996 (1)

Baasantseren, G.

Bryanston-Cross, P.

Chen, N.

Cho, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Choi, H.-J.

Claus, D.

Daneshpanah, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Georgiev, T.

T. Georgiev and A. Lumsdaine, “Reducing plenoptic camera artifacts,” Comput. Graph. Forum 29, 1955–1968 (2010).
[CrossRef]

Hahn, J.

Hong, J.

Hwang, D.-C.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004 (2006).
[CrossRef]

Javidi, B.

J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
[CrossRef]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[CrossRef]

K. Wakunami, M. Yamaguchi, and B. Javidi, “High resolution 3-D holographic display using dense ray sampling from integral imaging,” Opt. Lett. 37, 5103–5105 (2012).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Kang, J.-M.

Katz, B.

Kim, E.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004 (2006).
[CrossRef]

Kim, H.

Kim, M.-S.

Kim, N.

Kim, Y.

Kin, S.-K.

J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
[CrossRef]

Lee, B.

Lee, K.-H.

J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
[CrossRef]

lliescu, D.

Lohmann, A. W.

Lumsdaine, A.

T. Georgiev and A. Lumsdaine, “Reducing plenoptic camera artifacts,” Comput. Graph. Forum 29, 1955–1968 (2010).
[CrossRef]

Martinez-Corral, M.

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52, 546–560 (2013).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Min, S.-W.

Moon, I.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Park, G.

Park, J.-H.

Park, J.-S.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004 (2006).
[CrossRef]

Poon, T.-C.

T.-C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006), Chap. 1.

Rosen, J.

Saavedra, G.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Shaked, N. T.

Shin, D.-H.

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004 (2006).
[CrossRef]

Son, J.-Y.

J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
[CrossRef]

Son, W.-H.

J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
[CrossRef]

Stern, A.

Wakunami, K.

Xiao, X.

Yamaguchi, M.

Appl. Opt. (4)

Comput. Graph. Forum (1)

T. Georgiev and A. Lumsdaine, “Reducing plenoptic camera artifacts,” Comput. Graph. Forum 29, 1955–1968 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Korea (1)

Opt. Eng. (1)

J.-S. Park, D.-C. Hwang, D.-H. Shin, and E.-S. Kim, “Enhanced-resolution computational integral imaging reconstruction using an intermediate-view reconstruction technique,” Opt. Eng. 45, 117004 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (3)

J.-Y. Son, W.-H. Son, S.-K. Kin, K.-H. Lee, and B. Javidi, “Three-dimensional imaging for creating real-world-like environments,” Proc. IEEE 101, 190–205 (2013).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

Proc. SPIE (1)

N. Chen, J.-H. Park, and N. Kim, “Resolution analysis of Fourier hologram using integral imaging and its enhancement,” Proc. SPIE 7618, 761809 (2010).
[CrossRef]

Other (1)

T.-C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1.

Integral Fourier hologram generation with multiple orthographic projection views.

Fig. 2.
Fig. 2.

(a) SBP of simple signal and system and (b) SBP capacity of the input of the system.

Fig. 3.
Fig. 3.

SBP capacity of the generated Fourier hologram: (a) without aliasing effect and (b) with aliasing effect.

Fig. 4.
Fig. 4.

SBP capacity of the reconstructed image in four different conditions: (a) without aliasing and overlapping effects, (b) with overlapping effect, (c) with aliasing effect, and (d) with both aliasing and overlapping effects.

Fig. 5.
Fig. 5.

Principle of intermediate EI synthesis.

Fig. 6.
Fig. 6.

Mapping principle in two dimensions.

Fig. 7.
Fig. 7.

Simplified method for synthesizing intermediate EI.

Fig. 8.
Fig. 8.

Synthesize virtual samplings in spatial frequency domain. (a) Principle of synthesizing intermediate orthographic projection views. (b) Estimation of virtual pixel in EI.

Fig. 9.
Fig. 9.

3D object used in simulations.

Fig. 10.
Fig. 10.

Demonstration of intermediate EI synthesis.

Fig. 11.
Fig. 11.

Amplitude (left) and phase (right) of RGB integral Fourier holograms generated (a) from 50×50 observed EIs, (b) from 100×100 EIs synthesized with the proposed method in group I, and (c) from 100×100 observed EIs in group II.

Fig. 12.
Fig. 12.

Reconstruction results of integral Fourier holograms generated (a) from 50×50 observed EIs, (b) from EIs synthesized with the proposed method in group I, and (c) from observed EIs in group II.

Fig. 13.
Fig. 13.

PSNR of the reconstruction in two groups.

Fig. 14.
Fig. 14.

Demonstration of intermediate orthographic projection views synthesis.

Fig. 15.
Fig. 15.

Amplitude (left) and phase (right) of RGB integral Fourier holograms generated (a) from 50×50 orthographic projection views synthesized with observed EIs, (b) from 100×100 orthographic projection views synthesized with interpolated EIs in group I, and (c) from 100×100 orthographic projection views synthesized with observed EIs in group II.

Fig. 16.
Fig. 16.

Reconstruction results of integral Fourier hologram generated (a) from 50×50 orthographic projections synthesized with observed EIs, (b) from orthographic projections synthesized with interpolated EIs in group I, and (c) from orthographic projections synthesized with observed EIs in group II.

Fig. 17.
Fig. 17.

PSNR of the reconstruction in two groups.

Fig. 18.
Fig. 18.

(a) 2D images of a 3D scene from two different viewpoints. (b) EIs array of the 3D scene.

Fig. 19.
Fig. 19.

Amplitude (left) and phase (right) of RGB integral Fourier holograms generated (a) from 74×74 orthographic projection views synthesized with 30×30 observed EIs and (b) from 592×592 orthographic projection views synthesized with 480×480 EIs with the proposed methods.

Fig. 20.
Fig. 20.

Reconstruction results of integral Fourier holograms generated (a) from 74×74 orthographic projection views synthesized with 30×30 observed EIs, (b) from 296×296 orthographic projection views synthesized with 240×240 EIs, (c) from 296×296 orthographic projection views synthesized with 480×480 EIs, (d) from 592×592 orthographic projection views synthesized with 240×240 EIs, and (e) from 592×592 orthographic projection views synthesized with 480×480 EIs.

Tables (2)

Tables Icon

Table 1. Parameters in I and II Groups

Tables Icon

Table 2. Parameters in I and II Groups

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

H(u,v)=Ou,v(x,y)exp[j2πλf(ux+vy)]dxdy,
x1Δxw1ΔPx=lfmlafmla,x2Δxw2ΔPx=lfmlafmla.
x1=w1(lfmla)ΔPxfmlaΔx,x2=w2(lfmla)ΔPxfmlaΔx,
E(m,n)=14[E11(mx11,n+x21)+E12(m+x12,n+x21)+E21(mx11,nx22)+E22(m+x12,nx22)],
x11=w11(lfmla)ΔPxfmlaΔx,x12=w12(lfmla)ΔPxfmlaΔx,x21=w21(lfmla)ΔPxfmlaΔx,x22=w22(lfmla)ΔPxfmlaΔx.

Metrics