Abstract

Unlike a conventional white light source that emits a continuous and broad spectrum of light, the dual wavelength white light emitting diode (LED) generates white light by mixing blue and yellow lights, so there are two distinct peaks in its intensity spectrum. Prior works had shown that the spectral property of the dual wavelength white LED can affect the vertical scanning interferometry negatively if the spectral effects are not compensated. In this paper, we shall examine this issue by modeling the spectral property and variation of the dual wavelength white LED, followed by investigating its effects on the interference signal of vertical scanning interferometry. Instead of compensating the spectral effects of the dual wavelength white LED, we harness its spectral property to improve the performance of a phase-based height reconstruction algorithm in vertical scanning interferometry.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
    [CrossRef]
  2. D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14, 128–137 (2006).
    [CrossRef]
  3. I. Kassamakov, K. Hanhijärvi, I. Abbadi, J. Aaltonen, H. Ludvigsen, and E. Hæggström, “Scanning white-light interferometry with a supercontinuum source,” Opt. Lett. 34, 1582–1584 (2009).
    [CrossRef]
  4. W. K. Chong, X. Li, and S. Wijesoma, “Effects of phosphor-based LEDs on vertical scanning interferometry,” Opt. Lett. 35, 2946–2948 (2010).
    [CrossRef]
  5. V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
    [CrossRef]
  6. V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
    [CrossRef]
  7. S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
    [CrossRef]
  8. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef]
  9. S. S. C. Chim and G. S. Kino, “Correlation microscope,” Opt. Lett. 15, 579–581 (1990).
    [CrossRef]
  10. P. de Groot and X. C. de Lega, “Signal modeling for low-coherence height-scanning interference microscopy,” Appl. Opt. 43, 4821–4830 (2004).
    [CrossRef]
  11. W. Walter, “Determination of correlated color temperature based on a color-appearance model,” Color Res. Appl. 17, 24–30 (1992).
    [CrossRef]
  12. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).
  13. “LEDs Magazine—NEMA publishes white-LED binning standard (SSL 3-2010),” http://www.ledsmagazine.com/news/7/4/17 .
  14. “NEMA SSL 3—High-Power White LED Binning for General Illumination,” (2011).
  15. K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
    [CrossRef]
  16. E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011).
    [CrossRef]
  17. C. M. E. Tan, B. K. Chen, G. Xu, and Y. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectron. Reliab. 49, 1226–1230 (2009).
    [CrossRef]
  18. M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
    [CrossRef]
  19. “Thermally activated degradation of phosphor-converted white LEDs—LED professional—LED lighting technology,” IEEE Ind. Mag. (February 1, 2010).
  20. W. K. Chong, X. Li, and S. Yeng Chai, “Spectral effects of dual wavelength low coherence light source in white light interferometry,” Opt. Lasers Eng. 51, 651–655 (2013).
    [CrossRef]
  21. M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260, 68–72 (2006).
    [CrossRef]
  22. M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringe analysis,” in Pacific Rim Conference on Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005 (IEEE, 2005), pp. 1691–1692.
  23. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]

2013 (1)

W. K. Chong, X. Li, and S. Yeng Chai, “Spectral effects of dual wavelength low coherence light source in white light interferometry,” Opt. Lasers Eng. 51, 651–655 (2013).
[CrossRef]

2012 (1)

2011 (3)

E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011).
[CrossRef]

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

2010 (1)

2009 (2)

I. Kassamakov, K. Hanhijärvi, I. Abbadi, J. Aaltonen, H. Ludvigsen, and E. Hæggström, “Scanning white-light interferometry with a supercontinuum source,” Opt. Lett. 34, 1582–1584 (2009).
[CrossRef]

C. M. E. Tan, B. K. Chen, G. Xu, and Y. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectron. Reliab. 49, 1226–1230 (2009).
[CrossRef]

2008 (1)

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

2007 (1)

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

2006 (2)

D. Reolon, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Broadband supercontinuum interferometer for high-resolution profilometry,” Opt. Express 14, 128–137 (2006).
[CrossRef]

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260, 68–72 (2006).
[CrossRef]

2004 (1)

2002 (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[CrossRef]

1992 (1)

W. Walter, “Determination of correlated color temperature based on a color-appearance model,” Color Res. Appl. 17, 24–30 (1992).
[CrossRef]

1990 (2)

1982 (1)

Aaltonen, J.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

I. Kassamakov, K. Hanhijärvi, I. Abbadi, J. Aaltonen, H. Ludvigsen, and E. Hæggström, “Scanning white-light interferometry with a supercontinuum source,” Opt. Lett. 34, 1582–1584 (2009).
[CrossRef]

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

Abbadi, I.

Brun, G.

Chen, B. K.

C. M. E. Tan, B. K. Chen, G. Xu, and Y. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectron. Reliab. 49, 1226–1230 (2009).
[CrossRef]

Chim, S. S. C.

Chong, W. K.

W. K. Chong, X. Li, and S. Yeng Chai, “Spectral effects of dual wavelength low coherence light source in white light interferometry,” Opt. Lasers Eng. 51, 651–655 (2013).
[CrossRef]

W. K. Chong, X. Li, and S. Wijesoma, “Effects of phosphor-based LEDs on vertical scanning interferometry,” Opt. Lett. 35, 2946–2948 (2010).
[CrossRef]

de Groot, P.

de Lega, X. C.

Franssila, S.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

Grigoras, K.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

Hæggström, E.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

I. Kassamakov, K. Hanhijärvi, I. Abbadi, J. Aaltonen, H. Ludvigsen, and E. Hæggström, “Scanning white-light interferometry with a supercontinuum source,” Opt. Lett. 34, 1582–1584 (2009).
[CrossRef]

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

Hanhijärvi, K.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

I. Kassamakov, K. Hanhijärvi, I. Abbadi, J. Aaltonen, H. Ludvigsen, and E. Hæggström, “Scanning white-light interferometry with a supercontinuum source,” Opt. Lett. 34, 1582–1584 (2009).
[CrossRef]

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

Heikkinen, V.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

Hong, C. H.

E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011).
[CrossRef]

Ina, H.

Jacquot, M.

Jung, E.

E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011).
[CrossRef]

Kassamakov, I.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

I. Kassamakov, K. Hanhijärvi, I. Abbadi, J. Aaltonen, H. Ludvigsen, and E. Hæggström, “Scanning white-light interferometry with a supercontinuum source,” Opt. Lett. 34, 1582–1584 (2009).
[CrossRef]

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

Kim, H.

E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011).
[CrossRef]

Kino, G. S.

Kobayashi, S.

Li, X.

W. K. Chong, X. Li, and S. Yeng Chai, “Spectral effects of dual wavelength low coherence light source in white light interferometry,” Opt. Lasers Eng. 51, 651–655 (2013).
[CrossRef]

W. K. Chong, X. Li, and S. Wijesoma, “Effects of phosphor-based LEDs on vertical scanning interferometry,” Opt. Lett. 35, 2946–2948 (2010).
[CrossRef]

Liu, Y.

C. M. E. Tan, B. K. Chen, G. Xu, and Y. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectron. Reliab. 49, 1226–1230 (2009).
[CrossRef]

Ludvigsen, H.

Meneghesso, G.

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Meneghini, M.

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Miyamoto, Y.

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260, 68–72 (2006).
[CrossRef]

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringe analysis,” in Pacific Rim Conference on Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005 (IEEE, 2005), pp. 1691–1692.

Mura, G.

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Muthu, S.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[CrossRef]

Paschotta, R.

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).

Pashley, M. D.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[CrossRef]

Paulin, T.

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

Pawlowski, M. E.

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260, 68–72 (2006).
[CrossRef]

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringe analysis,” in Pacific Rim Conference on Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005 (IEEE, 2005), pp. 1691–1692.

Räikkönen, H.

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

Reolon, D.

Ryu, J. H.

E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011).
[CrossRef]

Sainiemi, L.

K. Hanhijärvi, I. Kassamakov, V. Heikkinen, J. Aaltonen, L. Sainiemi, K. Grigoras, S. Franssila, and E. Hæggström, “Stroboscopic supercontinuum white-light interferometer for MEMS characterization,” Opt. Lett. 37, 1703–1705 (2012).
[CrossRef]

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

Sakano, Y.

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260, 68–72 (2006).
[CrossRef]

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringe analysis,” in Pacific Rim Conference on Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005 (IEEE, 2005), pp. 1691–1692.

Sanna, C.

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Schuurmans, F. J. P.

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[CrossRef]

Takeda, M.

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260, 68–72 (2006).
[CrossRef]

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
[CrossRef]

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringe analysis,” in Pacific Rim Conference on Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005 (IEEE, 2005), pp. 1691–1692.

Tan, C. M. E.

C. M. E. Tan, B. K. Chen, G. Xu, and Y. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectron. Reliab. 49, 1226–1230 (2009).
[CrossRef]

Trevisanello, L.

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Vanzi, M.

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Veillas, C.

Verrier, I.

Wälchli, B.

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

Walter, W.

W. Walter, “Determination of correlated color temperature based on a color-appearance model,” Color Res. Appl. 17, 24–30 (1992).
[CrossRef]

Wijesoma, S.

Xu, G.

C. M. E. Tan, B. K. Chen, G. Xu, and Y. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectron. Reliab. 49, 1226–1230 (2009).
[CrossRef]

Yeng Chai, S.

W. K. Chong, X. Li, and S. Yeng Chai, “Spectral effects of dual wavelength low coherence light source in white light interferometry,” Opt. Lasers Eng. 51, 651–655 (2013).
[CrossRef]

Zanoni, E.

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Appl. Opt. (2)

Color Res. Appl. (1)

W. Walter, “Determination of correlated color temperature based on a color-appearance model,” Color Res. Appl. 17, 24–30 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333–338 (2002).
[CrossRef]

J. Electrochem. Soc. (1)

E. Jung, J. H. Ryu, C. H. Hong, and H. Kim, “Optical degradation of phosphor-converted white GaN-based light-emitting diodes under electro-thermal stress,” J. Electrochem. Soc. 158, H132–H136 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Microelectron. Reliab. (2)

C. M. E. Tan, B. K. Chen, G. Xu, and Y. Liu, “Analysis of humidity effects on the degradation of high-power white LEDs,” Microelectron. Reliab. 49, 1226–1230 (2009).
[CrossRef]

M. Meneghini, L. Trevisanello, C. Sanna, G. Mura, M. Vanzi, G. Meneghesso, and E. Zanoni, “High temperature electro-optical degradation of InGaN/GaN HBLEDs,” Microelectron. Reliab. 47, 1625–1629 (2007).
[CrossRef]

Opt. Commun. (1)

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringes analysis,” Opt. Commun. 260, 68–72 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lasers Eng. (1)

W. K. Chong, X. Li, and S. Yeng Chai, “Spectral effects of dual wavelength low coherence light source in white light interferometry,” Opt. Lasers Eng. 51, 651–655 (2013).
[CrossRef]

Opt. Lett. (4)

Proc. SPIE (3)

K. Hanhijärvi, J. Aaltonen, I. Kassamakov, K. Grigoras, L. Sainiemi, S. Franssila, and E. Hæggström, “Effect of LED spectral shift on vertical resolution in stroboscopic whitelight interferometry,” Proc. SPIE 7003, 70031S (2008).
[CrossRef]

V. Heikkinen, J. Aaltonen, I. Kassamakov, B. Wälchli, H. Räikkönen, T. Paulin, and E. Hæggström, “Non-phosphor white LED light source for interferometry,” Proc. SPIE 8133, 813309 (2011).
[CrossRef]

V. Heikkinen, K. Hanhijärvi, J. Aaltonen, H. Räikkönen, B. Wälchli, T. Paulin, I. Kassamakov, K. Grigoras, S. Franssila, and E. Hæggström, “Hybrid light source for scanning white light interferometry-based MEMS quality control,” Proc. SPIE 8082, 80822O (2011).
[CrossRef]

Other (5)

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).

“LEDs Magazine—NEMA publishes white-LED binning standard (SSL 3-2010),” http://www.ledsmagazine.com/news/7/4/17 .

“NEMA SSL 3—High-Power White LED Binning for General Illumination,” (2011).

M. E. Pawlowski, Y. Sakano, Y. Miyamoto, and M. Takeda, “Phase-crossing algorithm for white-light fringe analysis,” in Pacific Rim Conference on Lasers and Electro-Optics, 2005. CLEO/Pacific Rim 2005 (IEEE, 2005), pp. 1691–1692.

“Thermally activated degradation of phosphor-converted white LEDs—LED professional—LED lighting technology,” IEEE Ind. Mag. (February 1, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic diagram of vertical scanning interferometry

Fig. 2.
Fig. 2.

Graphical comparison of the intensity spectrum of simulated and commercially available phosphor-based white LED with different CCT of: (a) warm white, B Y ratio = 0.59 , (b) daylight white, B Y ratio = 1.14 , and (c) cool white, B Y ratio = 1.6 .

Fig. 3.
Fig. 3.

Effects of changing the blue to yellow ratio (BY ratio) of the dual wavelength white LED on correlogram. (Numerical aperture of objective is assumed to be 0.4.)

Fig. 4.
Fig. 4.

Graphical illustration on how the distinctive feature due to the dual wavelength white LED is further processed and characterized by two features (highlighted in red), which were made out of x valley , y valley , x peak , and y peak .

Fig. 5.
Fig. 5.

Effects of changing BY ratio on correlogram: (a) the peak, (b) the valley as indicated in Fig. 4. (Numerical aperture of objective is assumed to be 0.4.)

Fig. 6.
Fig. 6.

Effects of spectral variation of the dual wavelength white LED on correlogram expressed in spatial frequency.

Fig. 7.
Fig. 7.

Illustration of the phase-crossing algorithm by Pawlowski et al. [21] with the conventional white light source: (a) a region of the correlogram is selected for further processing, (b) the selected region is Fourier transformed and two filter windows are applied to extract the interference signals contributed by two narrow band signals, and (c) the phase information of the extracted interference signals are recovered and the phase-crossing point is identified.

Fig. 8.
Fig. 8.

Illustration of the phase-crossing algorithm by Pawlowski et al. [21] with the phosphor-based white LED: (a) a region of the correlogram is selected for further processing, (b) the selected region is Fourier transformed and two filter windows are applied to extract the interference signals contributed by two narrow band signals, and (c) the phase information of the extracted interference signals is recovered and the phase-crossing point is identified.

Fig. 9.
Fig. 9.

Comparing the correlograms using the conventional white light source and the dual wavelength white LED ( B Y ratio = 1.6 ).

Fig. 10.
Fig. 10.

Comparing the simulated 1 μm step height measured by the phase-crossing algorithm [21,22] using (a) the conventional white light source and (b) the dual wavelength white LED with the BY ratio of 0.59, 1.14, and 1.60.

Fig. 11.
Fig. 11.

Comparing the performance of the phase-crossing algorithm [21,22] using different light sources in terms of (a) the measurement repeatability (in terms of the standard deviation), the standard deviation of a perfectly flat surface is zero and (b) the measurement accuracy, the ideal value is 1 μm.

Fig. 12.
Fig. 12.

Experimental verification that measured a 10 μm step height with the phase-crossing algorithm [21,22] using (a) the conventional white light source and (b) the dual wavelength white LED.

Tables (2)

Tables Icon

Table 1. Illustrating the Detailed Implementation of the Phase-Crossing Algorithm [21,22]

Tables Icon

Table 2. Comparing the Performance of the Phase-Crossing Algorithm with Different Configurations of Filter Windows

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I interference ( z ) = C 1 bandwidth 0 θ 0 { k 2 × cos [ 2 k ( z z 0 ) cos θ + ϕ ] × sin θ cos θ d θ } F ( k ) d k ,
f ( k ) = B Y ratio × e ( k k blue σ blue ) 2 + e ( k k yellow σ yellow ) 2 ,
g ( z ) = a + b ( z z 0 ) cos ( 2 k ¯ ( z z 0 ) + α ( k ¯ ) ) ,

Metrics