Abstract

A theoretical analysis of fiber Bragg grating (FBG)-based plane strain monitoring of aerostat envelope structures is presented. Plane strain analysis of FBG-based aerostat envelope structures is much more complex than the case along the axis of the optical fiber because the effect of transverse stress on the FBG should be taken into consideration. To achieve accurate strain measurement of the aerostat envelope, a theoretical model is set up by using two perpendicular fibers in the monitoring. An analytical formula that evaluates the relationship between the strain measured by FBG sensors and the real one in the aerostat envelope is established. On the other hand, the real strain of aerostat envelope strain is affected by two unknown parameters, axial transfer rate KL and the radial transfer rate KR. An equation is derived to calculate the axial transfer rate KL. Then, the finite element method results show that KR is a very small value, but it cannot be ignored in accurate measurement. This paper would lay a theoretical groundwork for the research and design of FBG sensors in the structural health monitoring of aerostat envelope structures.

© 2013 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, H. Zhao, Y. Qiu, and J. Chen, “Modeling and simulation analysis of stratospheric aerostat envelop,” Comput. Simul. 30, 150–153 (2013).
  2. M. D. Todd, G. A. Johnson, and S. T. Vohra, “Deployment of a fiber Bragg grating-based measurement system in a structural health monitoring application,” Smart Mater. Struc. 10, 534–539 (2001).
    [CrossRef]
  3. H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).
  4. R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223–1224 (1996).
    [CrossRef]
  5. R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
    [CrossRef]
  6. J. Zhao, X. Zhang, Y. Huang, and X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
    [CrossRef]
  7. G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors 11, 384–408 (2011).
    [CrossRef]
  8. K. T. Lau, “Fibre-optic sensors and smart composites for concrete applications,” Mag. Concr. Res. 55, 19–34 (2003).
    [CrossRef]
  9. R. V. Steenkiste and L. Kollar, “Effect of the coating on the stresses and strains in an embedded fiber optic sensor,” J. Compos. Mater. 32, 1680–1711 (1998).
    [CrossRef]
  10. K. Nagano, S. Kawakami, and S. Nishida, “Change of the refractive index in an optical fiber due to external forces,” Appl. Opt. 17, 2080–2085 (1978).
    [CrossRef]
  11. W. Morey, G. Meltz, and W. Glenn, “Fiber optic Bragg grating sensors,” Fiber Optic Laser Sensors 1169, 98–107 (1989).
  12. A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  13. M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors 13, 2631–2644 (2013).
    [CrossRef]
  14. C. Liu, P. Chen, H. Li, and H. Tu, “Application of the fiber Bragg grating transverse effect in measurement of plain strain,” Opt. Optoelectron. Technol. 6, 29–32 (2008).
  15. D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Advanced layout of a fiber Bragg grating strain gague rosette,” J. Lightwave Technol. 24, 1019–1026 (2006).
    [CrossRef]
  16. Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
    [CrossRef]
  17. F. Ansari and Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
    [CrossRef]
  18. D. S. Li, H. N. Li, L. Ren, and G. B. Song, “Strain transferring analysis of fiber Bragg grating sensors,” Opt. Eng. 45, 024402 (2006).
    [CrossRef]

2013 (2)

D. Huang, H. Zhao, Y. Qiu, and J. Chen, “Modeling and simulation analysis of stratospheric aerostat envelop,” Comput. Simul. 30, 150–153 (2013).

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors 13, 2631–2644 (2013).
[CrossRef]

2012 (2)

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
[CrossRef]

2011 (1)

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors 11, 384–408 (2011).
[CrossRef]

2008 (1)

C. Liu, P. Chen, H. Li, and H. Tu, “Application of the fiber Bragg grating transverse effect in measurement of plain strain,” Opt. Optoelectron. Technol. 6, 29–32 (2008).

2006 (2)

D. S. Li, H. N. Li, L. Ren, and G. B. Song, “Strain transferring analysis of fiber Bragg grating sensors,” Opt. Eng. 45, 024402 (2006).
[CrossRef]

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Advanced layout of a fiber Bragg grating strain gague rosette,” J. Lightwave Technol. 24, 1019–1026 (2006).
[CrossRef]

2004 (1)

J. Zhao, X. Zhang, Y. Huang, and X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

2003 (1)

K. T. Lau, “Fibre-optic sensors and smart composites for concrete applications,” Mag. Concr. Res. 55, 19–34 (2003).
[CrossRef]

2001 (1)

M. D. Todd, G. A. Johnson, and S. T. Vohra, “Deployment of a fiber Bragg grating-based measurement system in a structural health monitoring application,” Smart Mater. Struc. 10, 534–539 (2001).
[CrossRef]

2000 (1)

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

1998 (2)

F. Ansari and Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

R. V. Steenkiste and L. Kollar, “Effect of the coating on the stresses and strains in an embedded fiber optic sensor,” J. Compos. Mater. 32, 1680–1711 (1998).
[CrossRef]

1997 (1)

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1996 (1)

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

1989 (1)

W. Morey, G. Meltz, and W. Glenn, “Fiber optic Bragg grating sensors,” Fiber Optic Laser Sensors 1169, 98–107 (1989).

1978 (1)

Ansari, F.

F. Ansari and Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

Askins, C.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Atia, W. A.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Betz, D. C.

Botsis, J.

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors 13, 2631–2644 (2013).
[CrossRef]

Chen, J.

D. Huang, H. Zhao, Y. Qiu, and J. Chen, “Modeling and simulation analysis of stratospheric aerostat envelop,” Comput. Simul. 30, 150–153 (2013).

Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
[CrossRef]

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Chen, P.

C. Liu, P. Chen, H. Li, and H. Tu, “Application of the fiber Bragg grating transverse effect in measurement of plain strain,” Opt. Optoelectron. Technol. 6, 29–32 (2008).

Culshaw, B.

Davis, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Degrieck, J.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors 11, 384–408 (2011).
[CrossRef]

El-Sherif, M. A.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Fan, Z.

Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
[CrossRef]

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Friebele, E.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Gafsi, R.

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Glenn, W.

W. Morey, G. Meltz, and W. Glenn, “Fiber optic Bragg grating sensors,” Fiber Optic Laser Sensors 1169, 98–107 (1989).

Huang, D.

D. Huang, H. Zhao, Y. Qiu, and J. Chen, “Modeling and simulation analysis of stratospheric aerostat envelop,” Comput. Simul. 30, 150–153 (2013).

Huang, Y.

J. Zhao, X. Zhang, Y. Huang, and X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Johnson, G. A.

M. D. Todd, G. A. Johnson, and S. T. Vohra, “Deployment of a fiber Bragg grating-based measurement system in a structural health monitoring application,” Smart Mater. Struc. 10, 534–539 (2001).
[CrossRef]

Karalekas, D.

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors 13, 2631–2644 (2013).
[CrossRef]

Kawakami, S.

Kersey, A.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kollar, L.

R. V. Steenkiste and L. Kollar, “Effect of the coating on the stresses and strains in an embedded fiber optic sensor,” J. Compos. Mater. 32, 1680–1711 (1998).
[CrossRef]

Koo, K.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lai, M.

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors 13, 2631–2644 (2013).
[CrossRef]

Lammens, N.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors 11, 384–408 (2011).
[CrossRef]

Lau, K. T.

K. T. Lau, “Fibre-optic sensors and smart composites for concrete applications,” Mag. Concr. Res. 55, 19–34 (2003).
[CrossRef]

LeBlanc, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Li, D. S.

D. S. Li, H. N. Li, L. Ren, and G. B. Song, “Strain transferring analysis of fiber Bragg grating sensors,” Opt. Eng. 45, 024402 (2006).
[CrossRef]

Li, H.

C. Liu, P. Chen, H. Li, and H. Tu, “Application of the fiber Bragg grating transverse effect in measurement of plain strain,” Opt. Optoelectron. Technol. 6, 29–32 (2008).

Li, H. N.

D. S. Li, H. N. Li, L. Ren, and G. B. Song, “Strain transferring analysis of fiber Bragg grating sensors,” Opt. Eng. 45, 024402 (2006).
[CrossRef]

Libo, Y.

F. Ansari and Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

Liu, C.

C. Liu, P. Chen, H. Li, and H. Tu, “Application of the fiber Bragg grating transverse effect in measurement of plain strain,” Opt. Optoelectron. Technol. 6, 29–32 (2008).

Luyckx, G.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors 11, 384–408 (2011).
[CrossRef]

Meltz, G.

W. Morey, G. Meltz, and W. Glenn, “Fiber optic Bragg grating sensors,” Fiber Optic Laser Sensors 1169, 98–107 (1989).

Morey, W.

W. Morey, G. Meltz, and W. Glenn, “Fiber optic Bragg grating sensors,” Fiber Optic Laser Sensors 1169, 98–107 (1989).

Nagano, K.

Nishida, S.

Patrick, H.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M.

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Qiu, Y.

D. Huang, H. Zhao, Y. Qiu, and J. Chen, “Modeling and simulation analysis of stratospheric aerostat envelop,” Comput. Simul. 30, 150–153 (2013).

Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
[CrossRef]

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Ren, L.

D. S. Li, H. N. Li, L. Ren, and G. B. Song, “Strain transferring analysis of fiber Bragg grating sensors,” Opt. Eng. 45, 024402 (2006).
[CrossRef]

Ren, X.

J. Zhao, X. Zhang, Y. Huang, and X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Singh, H.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Sirkis, J. S.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Song, G. B.

D. S. Li, H. N. Li, L. Ren, and G. B. Song, “Strain transferring analysis of fiber Bragg grating sensors,” Opt. Eng. 45, 024402 (2006).
[CrossRef]

Staszewski, W. J.

Steenkiste, R. V.

R. V. Steenkiste and L. Kollar, “Effect of the coating on the stresses and strains in an embedded fiber optic sensor,” J. Compos. Mater. 32, 1680–1711 (1998).
[CrossRef]

Thursby, G.

Todd, M. D.

M. D. Todd, G. A. Johnson, and S. T. Vohra, “Deployment of a fiber Bragg grating-based measurement system in a structural health monitoring application,” Smart Mater. Struc. 10, 534–539 (2001).
[CrossRef]

Tu, H.

C. Liu, P. Chen, H. Li, and H. Tu, “Application of the fiber Bragg grating transverse effect in measurement of plain strain,” Opt. Optoelectron. Technol. 6, 29–32 (2008).

Voet, E.

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors 11, 384–408 (2011).
[CrossRef]

Vohra, S. T.

M. D. Todd, G. A. Johnson, and S. T. Vohra, “Deployment of a fiber Bragg grating-based measurement system in a structural health monitoring application,” Smart Mater. Struc. 10, 534–539 (2001).
[CrossRef]

Wagreich, R. B.

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Wang, Q.

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
[CrossRef]

Wang, Y.

Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
[CrossRef]

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Zhang, X.

J. Zhao, X. Zhang, Y. Huang, and X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Zhao, H.

D. Huang, H. Zhao, Y. Qiu, and J. Chen, “Modeling and simulation analysis of stratospheric aerostat envelop,” Comput. Simul. 30, 150–153 (2013).

Q. Wang, Y. Qiu, H. Zhao, J. Chen, Y. Wang, and Z. Fan, “Analysis of strain transfer of six-layer surface-bonded fiber Bragg gratings,” Appl. Opt. 51, 4129–4138 (2012).
[CrossRef]

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Zhao, J.

J. Zhao, X. Zhang, Y. Huang, and X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Appl. Opt. (2)

Comput. Simul. (1)

D. Huang, H. Zhao, Y. Qiu, and J. Chen, “Modeling and simulation analysis of stratospheric aerostat envelop,” Comput. Simul. 30, 150–153 (2013).

Electron. Lett. (1)

R. B. Wagreich, W. A. Atia, H. Singh, and J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringent fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Fiber Optic Laser Sensors (1)

W. Morey, G. Meltz, and W. Glenn, “Fiber optic Bragg grating sensors,” Fiber Optic Laser Sensors 1169, 98–107 (1989).

J. Compos. Mater. (1)

R. V. Steenkiste and L. Kollar, “Effect of the coating on the stresses and strains in an embedded fiber optic sensor,” J. Compos. Mater. 32, 1680–1711 (1998).
[CrossRef]

J. Eng. Mech. (1)

F. Ansari and Y. Libo, “Mechanics of bond and interface shear transfer in optical fiber sensors,” J. Eng. Mech. 124, 385–394 (1998).
[CrossRef]

J. Lightwave Technol. (2)

D. C. Betz, G. Thursby, B. Culshaw, and W. J. Staszewski, “Advanced layout of a fiber Bragg grating strain gague rosette,” J. Lightwave Technol. 24, 1019–1026 (2006).
[CrossRef]

A. Kersey, M. Davis, H. Patrick, M. LeBlanc, K. Koo, C. Askins, M. Putnam, and E. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

J. Zhejiang Univ. Sci. A (1)

H. Zhao, Q. Wang, Y. Qiu, J. Chen, Y. Wang, and Z. Fan, “Strain transfer of surface-bonded fiber Bragg grating sensors for aerostat envelope structural health monitoring,” J. Zhejiang Univ. Sci. A 13, 538–548 (2012).

Mag. Concr. Res. (1)

K. T. Lau, “Fibre-optic sensors and smart composites for concrete applications,” Mag. Concr. Res. 55, 19–34 (2003).
[CrossRef]

Opt. Commun. (1)

J. Zhao, X. Zhang, Y. Huang, and X. Ren, “Experimental analysis of birefringence effects on fiber Bragg gratings induced by lateral compression,” Opt. Commun. 229, 203–207 (2004).
[CrossRef]

Opt. Eng. (1)

D. S. Li, H. N. Li, L. Ren, and G. B. Song, “Strain transferring analysis of fiber Bragg grating sensors,” Opt. Eng. 45, 024402 (2006).
[CrossRef]

Opt. Fiber Technol. (1)

R. Gafsi and M. A. El-Sherif, “Analysis of induced-birefringence effects on fiber Bragg gratings,” Opt. Fiber Technol. 6, 299–323 (2000).
[CrossRef]

Opt. Optoelectron. Technol. (1)

C. Liu, P. Chen, H. Li, and H. Tu, “Application of the fiber Bragg grating transverse effect in measurement of plain strain,” Opt. Optoelectron. Technol. 6, 29–32 (2008).

Sensors (2)

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors 13, 2631–2644 (2013).
[CrossRef]

G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “Strain measurements of composite laminates with embedded fibre Bragg gratings: criticism and opportunities for research,” Sensors 11, 384–408 (2011).
[CrossRef]

Smart Mater. Struc. (1)

M. D. Todd, G. A. Johnson, and S. T. Vohra, “Deployment of a fiber Bragg grating-based measurement system in a structural health monitoring application,” Smart Mater. Struc. 10, 534–539 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics