Abstract

A method for significant enhancement of the spectral resolution of a Fabry–Perot resonator in transmission and absorption measurements is proposed. In the method, a laser with ultrashort pulses is used as the optical source. A dispersive element is placed in front of the Fabry–Perot resonator and a phase modulator is incorporated into the resonator. The spectrum of the laser pulse transmitted through the system is approximately periodic with ultranarrow peaks. The sample transmission spectrum is measured by scanning the output pulse spectrum. It is demonstrated, in numerical simulations, that for realistic parameters of the phase modulator, the finesse of the Fabry–Perot resonator is increased from 72 to 1900 and a resolution of 1 MHz is achieved. A method for increasing the spectral range of measurements with scanning the periodic spectra is also proposed. The method is based on the use of a waveguide array of Mach–Zehnder interferometers or a single discretely tunable interferometer. The measurement of the sample transmission spectrum within 33 free spectral ranges of the resonator is numerically demonstrated. The spectral range of the measurement can be increased up to 10 THz resulting in the equivalent finesse of the system of 107 for a 100 fs laser pulse.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001).
    [CrossRef]
  2. X. Shan, X. Sun, J. Luo, and M. Zhan, “Ultranarrow-bandwidth atomic filter with Raman light amplification,” Opt. Lett. 33, 1842–1844 (2008).
    [CrossRef]
  3. X. Liu, A. Lin, G. Sun, D. S. Moon, D. Hwang, and Y. Chung, “Identical-dual-bandpass sampled fiber Bragg grating and its application to ultranarrow filters,” Appl. Opt. 47, 5637–5643 (2008).
    [CrossRef]
  4. X. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632–634 (2007).
    [CrossRef]
  5. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24, 2311–2317 (2006).
    [CrossRef]
  6. D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003).
    [CrossRef]
  7. M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
    [CrossRef]
  8. J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004).
    [CrossRef]
  9. T. Mansuryan, A. Zeytunyan, M. Kalashyan, G. Yesayan, L. Mouradian, F. Louradour, and A. Barthélémy, “Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope,” J. Opt. Soc. Am. B 25, A101–A110 (2008).
    [CrossRef]
  10. N. K. Berger, “Spectral measurements with superresolution based on periodic modulation of the spectrum,” Appl. Opt. 47, 6535–6542 (2008).
    [CrossRef]
  11. N. K. Berger, “Enhancement of resolution of optical spectrum analysers with thermally tuned sampled fibre Bragg grating,” Electron. Lett. 46, 1457–1458 (2010).
    [CrossRef]
  12. N. K. Berger, “Spectral superresolution with ultrashort optical pulses,” Appl. Opt. 51, 181–190 (2012).
    [CrossRef]
  13. P. Bousquet, Spectroscopy and Its Instrumentation (Hilger, 1971).
  14. B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
    [CrossRef]
  15. A. J. Effenberger and J. R. Scott, “Practical high-resolution detection method for laser-induced breakdown spectroscopy,” Appl. Opt. 51, B165–B170 (2012).
    [CrossRef]
  16. A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997).
    [CrossRef]
  17. N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007).
    [CrossRef]
  18. J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
    [CrossRef]
  19. J. M. Helbert, P. Laforie, and P. Miche, “Conditions of pressure scanning of a Fabry–Perot interferometer over a wide spectrum range,” Appl. Opt. 16, 2119–2126 (1977).
    [CrossRef]
  20. W. B. Cook, H. E. Snell, and P. B. Hays, “Multiplex Fabry–Perot interferometer: I. Theory,” Appl. Opt. 34, 5263–5267 (1995).
    [CrossRef]
  21. H. E. Snell, W. B. Cook, and P. B. Hays, “Multiplex Fabry–Perot interferometer: II. Laboratory prototype,” Appl. Opt. 34, 5268–5277 (1995).
    [CrossRef]
  22. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
    [CrossRef]
  23. G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
    [CrossRef]
  24. J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
    [CrossRef]
  25. B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
    [CrossRef]
  26. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
    [CrossRef]
  27. N. Picqué, F. Gueye, and G. Guelachvili, “Time-resolved Fourier transform intracavity spectroscopy with a Cr2+:ZnSe laser,” Opt. Lett. 30, 3410–3412 (2005).
    [CrossRef]
  28. L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
    [CrossRef]
  29. M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
    [CrossRef]
  30. T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” J. Lightwave Technol. 16, 824–832 (1998).
    [CrossRef]
  31. S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001).
    [CrossRef]
  32. S. Xiao, L. Hollberg, N. R. Newbury, and S. A. Diddams, “Toward a low-jitter 10 GHz pulsed source with an optical frequency comb generator,” Opt. Express 16, 8498–8508 (2008).
    [CrossRef]

2012 (2)

2011 (1)

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[CrossRef]

2010 (1)

N. K. Berger, “Enhancement of resolution of optical spectrum analysers with thermally tuned sampled fibre Bragg grating,” Electron. Lett. 46, 1457–1458 (2010).
[CrossRef]

2008 (5)

2007 (3)

X. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632–634 (2007).
[CrossRef]

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007).
[CrossRef]

L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
[CrossRef]

2006 (1)

2005 (2)

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

N. Picqué, F. Gueye, and G. Guelachvili, “Time-resolved Fourier transform intracavity spectroscopy with a Cr2+:ZnSe laser,” Opt. Lett. 30, 3410–3412 (2005).
[CrossRef]

2004 (3)

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004).
[CrossRef]

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

2003 (1)

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003).
[CrossRef]

2001 (2)

Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001).
[CrossRef]

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001).
[CrossRef]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

1999 (1)

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

1998 (1)

1997 (1)

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997).
[CrossRef]

1995 (2)

1994 (2)

J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
[CrossRef]

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
[CrossRef]

1993 (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

1977 (1)

Abe, M.

Azaña, J.

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004).
[CrossRef]

Baev, V. M.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Baney, D. M.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Banyai, W. C.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
[CrossRef]

Barthélémy, A.

Berden, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Berger, N. K.

N. K. Berger, “Spectral superresolution with ultrashort optical pulses,” Appl. Opt. 51, 181–190 (2012).
[CrossRef]

N. K. Berger, “Enhancement of resolution of optical spectrum analysers with thermally tuned sampled fibre Bragg grating,” Electron. Lett. 46, 1457–1458 (2010).
[CrossRef]

N. K. Berger, “Spectral measurements with superresolution based on periodic modulation of the spectrum,” Appl. Opt. 47, 6535–6542 (2008).
[CrossRef]

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004).
[CrossRef]

Bloom, D. M.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
[CrossRef]

Bousquet, P.

P. Bousquet, Spectroscopy and Its Instrumentation (Hilger, 1971).

Chujo, W.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001).
[CrossRef]

Chung, Y.

Cook, W. B.

Diddams, S. A.

Dong, L.

L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
[CrossRef]

Dorin, M.

J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
[CrossRef]

Edelstein, J.

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003).
[CrossRef]

Effenberger, A. J.

Erskine, D. J.

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003).
[CrossRef]

Feuerstein, W. M.

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003).
[CrossRef]

Fischer, B.

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004).
[CrossRef]

Godil, A. A.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
[CrossRef]

Guelachvili, G.

Gueye, F.

Hays, P. B.

He, Y.

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[CrossRef]

Helbert, J. M.

Hodges, J. T.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Hollberg, L.

Hwang, D.

Jia, S. T.

L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
[CrossRef]

Jiang, J. H.

Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001).
[CrossRef]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Kalashyan, M.

Kaminskii, A. S.

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997).
[CrossRef]

Kauffman, M. T.

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
[CrossRef]

Kerr, R. B.

J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
[CrossRef]

Kinugawa, S.

Kitayama, K.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001).
[CrossRef]

Kosarev, E. L.

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997).
[CrossRef]

Kourogi, M.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Laforie, P.

Lancaster, R. S.

J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
[CrossRef]

Latz, T.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Lavrov, E. V.

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997).
[CrossRef]

Law, J. Y.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Layer, H. P.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Lee, A.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Levit, B.

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004).
[CrossRef]

Lin, A.

Liu, X.

Louradour, F.

Luo, J.

Ma, W. G.

L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
[CrossRef]

Mansuryan, T.

Masuda, H.

Mattori, S.

McAlexander, W. I.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Miche, P.

Miller, W. W.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Miyagi, K.

Moon, D. S.

Morioka, T.

Mouradian, L.

Nakagawa, K.

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Newbury, N. R.

Ng, K.

J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
[CrossRef]

Noto, J.

J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
[CrossRef]

Ohara, T.

Ohtsu, M.

T. Saitoh, S. Mattori, S. Kinugawa, K. Miyagi, A. Taniguchi, M. Kourogi, and M. Ohtsu, “Modulation characteristic of waveguide-type optical frequency comb generator,” J. Lightwave Technol. 16, 824–832 (1998).
[CrossRef]

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

Omenetto, N.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007).
[CrossRef]

Orr, B. J.

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[CrossRef]

Osawa, S.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001).
[CrossRef]

Ozaki, Y.

Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001).
[CrossRef]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

Pering, R. D.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Picqué, N.

Saitoh, T.

Šašic, S.

Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001).
[CrossRef]

Scace, G. E.

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Scott, J. R.

Shan, X.

Smith, B. W.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007).
[CrossRef]

Snell, H. E.

Sun, G.

Sun, X.

Szafraniec, B.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Takahashi, H.

Takara, H.

Tan, T. S.

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Taniguchi, A.

Taylor, N.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007).
[CrossRef]

Toschek, P. E.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Wada, N.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001).
[CrossRef]

Welsh, B.

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003).
[CrossRef]

Winefordner, J. D.

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007).
[CrossRef]

Xiao, S.

Yamamoto, T.

Yesayan, G.

Yin, W. B.

L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
[CrossRef]

Zeytunyan, A.

Zhan, M.

Zhang, L.

L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. B (2)

N. Taylor, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Measurement of number density of lead and thallium see-through hollow cathode discharges with a high resolution Fabry–Perot spectrometer and by conventional atomic absorption,” Appl. Phys. B 89, 99–106 (2007).
[CrossRef]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69, 171–202 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

M. T. Kauffman, W. C. Banyai, A. A. Godil, and D. M. Bloom, “Time-to-frequency converter for measuring picosecond optical pulses,” Appl. Phys. Lett. 64, 270–272 (1994).
[CrossRef]

Astrophys. J. (1)

D. J. Erskine, J. Edelstein, W. M. Feuerstein, and B. Welsh, “High-resolution broadband spectroscopy using an externally dispersed interferometer,” Astrophys. J. 592, L103–L106 (2003).
[CrossRef]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

B. J. Orr and Y. He, “Rapidly swept continuous-wave cavity-ringdown spectroscopy,” Chem. Phys. Lett. 512, 1–20 (2011).
[CrossRef]

Electron. Lett. (2)

N. K. Berger, “Enhancement of resolution of optical spectrum analysers with thermally tuned sampled fibre Bragg grating,” Electron. Lett. 46, 1457–1458 (2010).
[CrossRef]

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, “Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter,” Electron. Lett. 37, 1356–1357 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Kourogi, K. Nakagawa, and M. Ohtsu, “Wide-span optical frequency comb generator for accurate optical frequency difference measurement,” IEEE J. Quantum Electron. 29, 2693–2701 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Azaña, N. K. Berger, B. Levit, and B. Fischer, “Spectro-temporal imaging of optical pulses with a single time lens,” IEEE Photon. Technol. Lett. 16, 882–884 (2004).
[CrossRef]

X. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632–634 (2007).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

B. Szafraniec, A. Lee, J. Y. Law, W. I. McAlexander, R. D. Pering, T. S. Tan, and D. M. Baney, “Swept coherent optical spectrum analysis,” IEEE Trans. Instrum. Meas. 53, 203–215 (2004).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, “Cavity ring-down spectroscopy: experimental schemes and applications,” Int. Rev. Phys. Chem. 19, 565–607 (2000).
[CrossRef]

J. Lightwave Technol. (2)

J. Near Infrared Spectrosc. (1)

Y. Ozaki, S. Šašić, and J. H. Jiang, “How can we unravel complicated near infrared spectra?—Recent progress in spectral analysis methods for resolution enhancement and band assignments in the near infrared region,” J. Near Infrared Spectrosc. 9, 63–95 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

A. S. Kaminskii, E. L. Kosarev, and E. V. Lavrov, “Using comb-like instrumental functions in high-resolution spectroscopy,” Meas. Sci. Technol. 8, 864–870 (1997).
[CrossRef]

Opt. Eng. (1)

J. Noto, R. B. Kerr, K. Ng, R. S. Lancaster, and M. Dorin, “Boston University’s high-resolution near-infrared Fabry-Pérot spectrometer,” Opt. Eng. 33, 451–456 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

J. T. Hodges, H. P. Layer, W. W. Miller, and G. E. Scace, “Frequency-stabilized single-mode cavity ring-down apparatus for high-resolution absorption spectroscopy,” Rev. Sci. Instrum. 75, 849–863 (2004).
[CrossRef]

Sens. Actuators B Chem. (1)

L. Dong, W. B. Yin, W. G. Ma, L. Zhang, and S. T. Jia, “High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity,” Sens. Actuators B Chem. 127, 350–357 (2007).
[CrossRef]

Other (1)

P. Bousquet, Spectroscopy and Its Instrumentation (Hilger, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Proposed experimental setup for high-resolution broadband spectrometry. Resonator-based phase modulator: LF, low-frequency ramp generator; HF, high-frequency generator of sinusoidal voltage; RPS, radiofrequency phase shifter; E, electrodes; EO, electro-optic element (waveguide or crystal); M 1 and M 2 , mirrors of the Fabry–Perot resonator. Waveguide array of Mach–Zehnder (MZ) interferometers: T j ( j = 1 , 2 , , M 1 ), taps for the control of the split ratio in the interferometer arms; PS j , optical phase shifters; PD, photodiode.

Fig. 2.
Fig. 2.

Spectral responses of the resonator-based phase modulator within the FSR = 1.905 GHz of the Fabry–Perot resonator for f m = 6 FSR = 11.43 GHz , (a)  Δ n 0 = 0 , Δ t 0 = 0 , (b)  Δ n 0 = 0 , Δ t 0 = 0.3 / f m . Inset: magnified central peak of the spectral response.

Fig. 3.
Fig. 3.

Illustration to extension of the spectral range of the system with a periodic spectral response. (a) Sample transmission spectrum to be measured within 5 FSR and (b) Fourier transform of the sample transmission spectrum (solid curve) with the sampling points (circles) and their numbers and Fourier coefficients of the system spectral response (triangles).

Fig. 4.
Fig. 4.

Sample transmission spectrum to be measured within the FSR of the Fabry–Perot resonator. Original spectrum and the spectrum restored in the absence of noise (they fully coincide, solid curve), restored spectrum in the presence of noise with a level of 1% (dotted curve), and oscilloscope signal expressed as a function of the frequency shift proportional to time (dashed curve). Chosen system spectral response is shown in Fig. 2(a).

Fig. 5.
Fig. 5.

Calculated transmission spectrum of the first channel ( s = 1 ) of the identical-dual-bandpass SFBG [3] within the interval of 33 FSR = 62.9 GHz . Magnified central peak with a width of 2 MHz is shown in Fig. 6 (solid curve).

Fig. 6.
Fig. 6.

Central peak of the transmission spectrum shown in Fig. 5. Original spectrum to be measured (solid curve), spectrum restored in the absence of noise (dotted curve), and spectrum restored in the presence of noise with a level of 0.1% (dashed curve).

Fig. 7.
Fig. 7.

Transmission spectrum of the first channel ( s = 1 ) of the identical-dual-bandpass SFBG [3] restored in the presence of noise with a level of 0.1%.

Fig. 8.
Fig. 8.

First line of the sample transmission spectrum consisting of four ultranarrow lines to be measured within 33 FSRs. Original spectrum and the spectrum restored in the absence of noise (they fully coincide, solid curve) and spectrum restored in the presence of noise with a level of 1% (dashed curve).

Fig. 9.
Fig. 9.

Sample transmission spectrum consisting of four ultranarrow lines restored within 33 FSRs in the presence of noise with a level of 1%.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

f m = N · FSR ,
Λ f = 1 / ( β 2 L ω m ) .
E out ( t ) = ( 1 R ) k = 0 R k exp { i ω 0 [ t 2 k + 1 2 FSR ( 1 + Δ n n ) ] } × exp { i ( 1 ) N ( k + 1 ) A sin [ ω m ( t Δ t ) ] } E disp ( t 2 k + 1 2 FSR ) ,
F out ( ω ) = ( 1 R ) exp ( i ω + ω 0 ω 0 Δ n / n 2 FSR ) k = 0 R k exp ( i k ω + ω 0 ω 0 Δ n / n FSR ) × m = ( 1 ) m N J m [ ( 1 ) N ( k + 1 ) A ] exp ( i m ω m Δ t ) exp [ i β 2 L ( ω m ω m ) 2 2 ] F in ( ω m ω m ) ,
f p m max f m ,
F in ( ω m ω m ) F in ( ω ) .
J m ( x ) = 1 2 π π π exp ( i x sin φ i m φ ) d φ .
F out ( ω ) = F in ( ω ) ( 1 R ) exp ( i ω + ω 0 ω 0 Δ n / n 2 FSR ) exp ( i β 2 L ω 2 2 ) × m = ( 1 ) m N exp ( i m 2 β 2 L ω m 2 2 ) exp [ i m β 2 L ω m ( ω Δ t β 2 L ) ] Int ( m , ω ) ,
Int ( m , ω ) = 1 2 π π π exp [ i ( 1 ) N A sin φ i m φ ] 1 R exp ( i ω + ω 0 ω 0 Δ n / n FSR ) exp [ i ( 1 ) N A sin φ ] d φ .
Λ f = K · FSR ,
β 2 L = 1 K ω m FSR .
ω 0 n Δ n ( t ) = 1 β 2 L Δ t ( t ) .
f osc ( Δ ω ) = 0 S ( ω Δ ω ) S samp ( ω ) d ω ,
S ( ω Δ ω ) = m = c m exp ( i m ω Δ ω FSR ) ,
F samp ( m FSR ) = F osc , m c m ,
F samp ( M m t s ) = F osc , m c m ,
F osc , m , j = c m { F samp ( m M t s ) + 1 2 F samp [ ( m M j ) t s ] + 1 2 F samp [ ( m M + j ) t s ] } ,
F samp [ ( m M + j ) t s ] = 1 c m ( F osc , m , j + i F s h osc , m , j ) ( 1 + i ) F samp ( m M t s ) ,

Metrics