Abstract

A mid-IR optical analyzer based on a 3 μm Fabry–Perot quantum cascade laser has been developed for ultrafast detection of aerosol propellants, such as propane and butane. Given the laser emission bandwidth of 35cm1, the system is spectrally well-matched to the C–H vibrational band of hydrocarbons, it is insusceptible to water interference, and stable enough to operate without wavelength scanning. Thus, it offers both high sensitivity and speed, reaching 1 ppm precision within a measurement time of 10 ms. The performance of the instrument is evaluated with an industrial demonstrator for aerosol cans leak testing, confirming that, in compliance with international directives, it can detect leaks of 1.2×104slpm at a rate of 500 cans per minute.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. European Agreement concerning the International Carriage of Dangerous Goods by Road, http://www.unece.org/trans/danger/publi/adr/adr2007/07contentse.html , 2007.
  2. B. V. Braune, “Warm water test bath/alternative test methods,” Aerosol Europe 9, 10–13 (2001).
  3. E. Avensbo and L. W. Bade, “Aerosol water bath test,” U.S. Patent3,950,982 A (20April1976).
  4. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [CrossRef]
  5. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
    [CrossRef]
  6. R. S. Ramussen, “Vibrational frequency assignments for paraffin hydrocarbons; infrared absorption spectra of the butanes and pentanes,” J. Chem. Phys. 16, 712–727 (1948).
    [CrossRef]
  7. A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
    [CrossRef]
  8. A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
    [CrossRef]
  9. J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
    [CrossRef]
  10. O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
    [CrossRef]
  11. A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
    [CrossRef]
  12. M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
    [CrossRef]
  13. K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
    [CrossRef]
  14. B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
    [CrossRef]
  15. C. M. Gittins, E. T. Wetjen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivico, J. N. Baillargeon, and A. Y. Cho, “Quantitative gas sensing by backscatter-absorption measurements of a pseudorandom code modulated λ∼8  μm quantum cascade laser,” Opt. Lett. 251162–1164, (2000).
    [CrossRef]
  16. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
    [CrossRef]
  17. J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
    [CrossRef]
  18. B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
    [CrossRef]
  19. G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
    [CrossRef]
  20. M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
    [CrossRef]
  21. P. Werle, R. Miicke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
    [CrossRef]

2012 (2)

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

2011 (3)

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[CrossRef]

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

2010 (4)

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
[CrossRef]

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

2008 (3)

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

2005 (1)

G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[CrossRef]

2001 (1)

B. V. Braune, “Warm water test bath/alternative test methods,” Aerosol Europe 9, 10–13 (2001).

2000 (2)

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

1993 (1)

P. Werle, R. Miicke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

1948 (1)

R. S. Ramussen, “Vibrational frequency assignments for paraffin hydrocarbons; infrared absorption spectra of the butanes and pentanes,” J. Chem. Phys. 16, 712–727 (1948).
[CrossRef]

Abell, J.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Avensbo, E.

E. Avensbo and L. W. Bade, “Aerosol water bath test,” U.S. Patent3,950,982 A (20April1976).

Bade, L. W.

E. Avensbo and L. W. Bade, “Aerosol water bath test,” U.S. Patent3,950,982 A (20April1976).

Baillargeon, J. N.

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Baranov, A. N.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
[CrossRef]

Bauer, A.

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

Beck, M.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
[CrossRef]

Belahsene, S.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

Bewley, W. W.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Bismuto, A.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

Braune, B. V.

B. V. Braune, “Warm water test bath/alternative test methods,” Aerosol Europe 9, 10–13 (2001).

Canedy, C. L.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Capasso, F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

C. M. Gittins, E. T. Wetjen, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivico, J. N. Baillargeon, and A. Y. Cho, “Quantitative gas sensing by backscatter-absorption measurements of a pseudorandom code modulated λ∼8  μm quantum cascade laser,” Opt. Lett. 251162–1164, (2000).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Cathabard, O.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
[CrossRef]

Cho, A. Y.

Cockburn, J. W.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

Commin, J. P.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Dallner, M.

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

Devenson, J.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
[CrossRef]

Duxbury, G.

G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[CrossRef]

Emmenegger, L.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Eugster, W.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Faist, J.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Fischer, M.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

Forchel, A.

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

Frank, J.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
[CrossRef]

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Gittins, C. M.

Glitsch, S.

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

Gmachl, C.

Guaitella, O.

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

Hinkov, B.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

Höfling, S.

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

Hübner, M.

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

Hutchinson, A. L.

Kamp, M.

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

Kennedy, K.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

Kim, C. S.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Kim, M.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Koeth, J.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Krysa, A. B.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

Krzempek, K.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

Langford, N.

G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[CrossRef]

Lendl, B.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
[CrossRef]

Lewicki, R.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Lindle, J. R.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Marinov, D.

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

McCulloch, M. T.

G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[CrossRef]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

McManus, J. B.

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Meyer, J. R.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Miicke, R.

P. Werle, R. Miicke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Mohn, J.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Moreno, J. C.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
[CrossRef]

Müller, A.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
[CrossRef]

Nähle, L.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

Nelson, D. D.

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Ramussen, R. S.

R. S. Ramussen, “Vibrational frequency assignments for paraffin hydrocarbons; infrared absorption spectra of the butanes and pentanes,” J. Chem. Phys. 16, 712–727 (1948).
[CrossRef]

Revin, D. G.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

Riedi, S.

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

Röpcke, J.

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

Rouillard, Y.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

Rousseau, A.

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

Schindler, R.

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
[CrossRef]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Sivico, D. L.

Slemr, F.

P. Werle, R. Miicke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

So, S.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Teissier, R.

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
[CrossRef]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Tittel, F. K.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Tuzson, B.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Vurgaftman, I.

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

Welzel, S.

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

Werle, P.

P. Werle, R. Miicke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Werner, R. A.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Wetjen, E. T.

Worschech, L.

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

Wright, S.

G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[CrossRef]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

Zahniser, M. S.

J. B. McManus, M. S. Zahniser, and D. D. Nelson, “Dual quantum cascade laser trace gas instrument with astigmatic Herriott cell at high pass number,” Appl. Opt. 50, A74–A85 (2011).
[CrossRef]

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Zeeman, M. J.

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

Zhang, S. Y.

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

Aerosol Europe (1)

B. V. Braune, “Warm water test bath/alternative test methods,” Aerosol Europe 9, 10–13 (2001).

Anal. Chem. (1)

B. Lendl, J. Frank, R. Schindler, A. Müller, M. Beck, and J. Faist, “Mid-infrared quantum cascade lasers for flow injection analysis,” Anal. Chem. 72, 1645–1648 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

B. Tuzson, J. Mohn, M. J. Zeeman, R. A. Werner, W. Eugster, M. S. Zahniser, D. D. Nelson, J. B. McManus, and L. Emmenegger, “High precision and continuous field measurements of δ13C and δ18  O in carbon dioxide with a cryogen-free QCLAS,” Appl. Phys. B 92, 451–458 (2008).
[CrossRef]

K. Krzempek, R. Lewicki, L. Nähle, M. Fischer, J. Koeth, S. Belahsene, Y. Rouillard, L. Worschech, and F. K. Tittel, “Continuous wave, distributed feedback diode laser based sensor for trace-gas detection of ethane,” Appl. Phys. B 106, 251–255 (2012).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165–176 (2008).
[CrossRef]

P. Werle, R. Miicke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B 57, 131–139 (1993).
[CrossRef]

Appl. Phys. Lett. (4)

M. Kim, C. L. Canedy, W. W. Bewley, C. S. Kim, J. R. Lindle, J. Abell, I. Vurgaftman, and J. R. Meyer, “Interband cascade laser emitting at λ=3.75  μm in continuous wave above room temperature,” Appl. Phys. Lett. 92, 191110 (2008).
[CrossRef]

J. P. Commin, D. G. Revin, S. Y. Zhang, A. B. Krysa, K. Kennedy, and J. W. Cockburn, “High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K,” Appl. Phys. Lett. 97, 031108 (2010).
[CrossRef]

O. Cathabard, R. Teissier, J. Devenson, J. C. Moreno, and A. N. Baranov, “Quantum cascade lasers emitting near 2.6 μm,” Appl. Phys. Lett. 96, 141110 (2010).
[CrossRef]

A. Bismuto, M. Beck, and J. Faist, “High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K,” Appl. Phys. Lett. 98, 191104 (2011).
[CrossRef]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487, 1–18 (2010).
[CrossRef]

Chem. Soc. Rev. (1)

G. Duxbury, N. Langford, M. T. McCulloch, and S. Wright, “Quantum cascade semiconductor infrared and far-infrared lasers: from trace gas sensing to non-linear optics,” Chem. Soc. Rev. 34, 921–934 (2005).
[CrossRef]

J. Chem. Phys. (1)

R. S. Ramussen, “Vibrational frequency assignments for paraffin hydrocarbons; infrared absorption spectra of the butanes and pentanes,” J. Chem. Phys. 16, 712–727 (1948).
[CrossRef]

Opt. Eng. (1)

A. Bauer, M. Dallner, M. Kamp, S. Höfling, L. Worschech, and A. Forchel, “Shortened injector interband cascade lasers for 3.3 to 3.6 μm emission,” Opt. Eng. 49, 111117 (2010).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, and J. Röpcke, “TRIPLE Q: a three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements,” Rev. Sci. Instrum. 82, 093102 (2011).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[CrossRef]

Semicond. Sci. Technol. (1)

A. Bismuto, S. Riedi, B. Hinkov, M. Beck, and J. Faist, “Sb-free quantum cascade lasers in the 3–4 μm spectral range,” Semicond. Sci. Technol. 27, 045013 (2012).
[CrossRef]

Other (2)

European Agreement concerning the International Carriage of Dangerous Goods by Road, http://www.unece.org/trans/danger/publi/adr/adr2007/07contentse.html , 2007.

E. Avensbo and L. W. Bade, “Aerosol water bath test,” U.S. Patent3,950,982 A (20April1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Mid-IR absorption spectrum of 0.1% propane, n-butane, and iso-butane acquired using Bruker Vertex 80, resolution 0.075cm1, compared to 1% water absorption simulated using data from HITRAN database, http://www.cfa.harvard.edu/hitran, using a resolution of 0.1cm1. Inset shows in detail the respective hydrocarbon spectra at 30502800cm1. (b) Composite absorption spectrum of 10 ppm propane in ambient air (1% H2O).

Fig. 2.
Fig. 2.

Emission spectrum of the Fabry–Perot QCL centered at 3003cm1 (black) and its overlap with the propane absorption spectrum (gray). The inset shows the residual Fabry–Perot modulation of the amplitude.

Fig. 3.
Fig. 3.

Schematic drawing of the spectroscopic setup combining optical subsystem and data acquisition unit.

Fig. 4.
Fig. 4.

Allan plots associated to the transmission signal for the evacuated system (gray) and system under ambient air flow of 12 slpm, containing 2.8% water and 1.8 ppm methane (red).

Fig. 5.
Fig. 5.

Transmission response to propane concentration change from 0 to 9 ppm (black) and 90 ppm (red), respectively. Inset shows a detailed zoom of the transmission decay for 90 ppm, which determines the gas exchange time of the analyzer.

Fig. 6.
Fig. 6.

Simulated transmission response to a periodic modulation of propane concentration at the gas inlet for three different modulation rates: (a) (1/4τ), (b) (1/2τ), and (c) (1/τ); gray shaded regions represent the propane mixing ratio of 10 ppm.

Fig. 7.
Fig. 7.

(a) Schematic drawing of industrial demonstrator for leak testing of filled aerosol cans. (b), (c) Transmission response to a cyclic passage of one leaking bottle of 8×105slpm and a sequence of four bottles with leaks 8×105slpm, 1×104slpm, 0, and 1.6×104slpm.

Metrics