Abstract

The complete analytical solutions of the mode-coupling dynamics for seven-core multicore fibers (MCFs) with identical cores is proposed. All the coupling coefficients Cmn of adjacent cores and nonadjacent cores as a function of the structural parameters are investigated. It is shown that the coupling coefficients can decrease by adjusting the structural parameters. In addition, the trench-assisted structure could be used for suppressing cross talk in MCF, and the effective area Aeff can be enlarged without degrading the crosstalk properties. Simulations suggest that low cross talk and/or large Aeff could be achieved by adjusting the trench parameters. Large mode area could be obtained by utilizing small trench (small trench width c, small refractive index difference Δtrench) in the trench-assisted MCF (TA-MCF), whereas low cross talk could be achieved by utilizing larger trench (large trench width c, large Δtrench) in the TA-MCF.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.
  2. M. Koshiba, “Recent progress in multi-core fibers for ultra-large-capacity transmission,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 38–39.
  3. K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugisaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ1.
  4. K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.
  5. F. Y. M. Chan, A. P. T. Lau, and H.-Y. Tam, “Mode coupling dynamics and communication strategies for multi-core fiber systems,” Opt. Express 20, 4548–4563 (2012).
    [CrossRef]
  6. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
    [CrossRef]
  7. K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 164–165.
  8. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
    [CrossRef]
  9. K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.
  10. M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6, 98–103 (2009).
    [CrossRef]
  11. K. Imamura, K. Mukasa, and R. Sugizaki, “Trench assisted multi-core fiber with large Aeff over 100  μm2 and low attenuation loss,” in European Conference and Exposition on Optical Communications, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper Mo.1.LeCervin.
  12. K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19, B543–B550 (2011).
    [CrossRef]
  13. K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Characterisation of MC Fibers: New Techniques and Challenges,” in Optical Fiber Communication Conference, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D.5.
  14. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber realizing space-division multiplexed ultra-long-haul transmission,” in CLEO: Science and Innovations, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper CTh4G.
  15. T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ3.
  16. K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multicore fibers,” IEEE Photon. Technol. Lett. 24, 1898–1901 (2012).
    [CrossRef]
  17. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
    [CrossRef]
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  19. H. A. Haus and L. Molter-Orr, “Coupled multiple waveguide systems,” IEEE J. Quantum Electron. 19, 840–844 (1983).
    [CrossRef]
  20. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).
  21. J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

2012 (2)

F. Y. M. Chan, A. P. T. Lau, and H.-Y. Tam, “Mode coupling dynamics and communication strategies for multi-core fiber systems,” Opt. Express 20, 4548–4563 (2012).
[CrossRef]

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multicore fibers,” IEEE Photon. Technol. Lett. 24, 1898–1901 (2012).
[CrossRef]

2011 (3)

2009 (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6, 98–103 (2009).
[CrossRef]

1983 (1)

H. A. Haus and L. Molter-Orr, “Coupled multiple waveguide systems,” IEEE J. Quantum Electron. 19, 840–844 (1983).
[CrossRef]

1972 (1)

Arakawa, Y.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19, B543–B550 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

Awaji, Y.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

Chan, F. Y. M.

Guan, N.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

Haus, H. A.

H. A. Haus and L. Molter-Orr, “Coupled multiple waveguide systems,” IEEE J. Quantum Electron. 19, 840–844 (1983).
[CrossRef]

Hayashi, T.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
[CrossRef]

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ3.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber realizing space-division multiplexed ultra-long-haul transmission,” in CLEO: Science and Innovations, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper CTh4G.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

Imamura, K.

K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugisaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ1.

K. Imamura, K. Mukasa, and R. Sugizaki, “Trench assisted multi-core fiber with large Aeff over 100  μm2 and low attenuation loss,” in European Conference and Exposition on Optical Communications, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper Mo.1.LeCervin.

Kanno, A.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

Kawanishi, T.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

Kobayashi, T.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

Kokubun, Y.

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6, 98–103 (2009).
[CrossRef]

Koshiba, M.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multicore fibers,” IEEE Photon. Technol. Lett. 24, 1898–1901 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19, B543–B550 (2011).
[CrossRef]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6, 98–103 (2009).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Characterisation of MC Fibers: New Techniques and Challenges,” in Optical Fiber Communication Conference, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D.5.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.

K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 164–165.

M. Koshiba, “Recent progress in multi-core fibers for ultra-large-capacity transmission,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 38–39.

Lau, A. P. T.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Matsui, T.

K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 164–165.

Matsuo, S.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multicore fibers,” IEEE Photon. Technol. Lett. 24, 1898–1901 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19, B543–B550 (2011).
[CrossRef]

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.

K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Characterisation of MC Fibers: New Techniques and Challenges,” in Optical Fiber Communication Conference, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D.5.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

Molter-Orr, L.

H. A. Haus and L. Molter-Orr, “Coupled multiple waveguide systems,” IEEE J. Quantum Electron. 19, 840–844 (1983).
[CrossRef]

Mukasa, K.

K. Imamura, K. Mukasa, and R. Sugizaki, “Trench assisted multi-core fiber with large Aeff over 100  μm2 and low attenuation loss,” in European Conference and Exposition on Optical Communications, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper Mo.1.LeCervin.

K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugisaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ1.

Nagashima, T.

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).

Saitoh, K.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multicore fibers,” IEEE Photon. Technol. Lett. 24, 1898–1901 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19, B543–B550 (2011).
[CrossRef]

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6, 98–103 (2009).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Characterisation of MC Fibers: New Techniques and Challenges,” in Optical Fiber Communication Conference, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D.5.

K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 164–165.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.

Sakaguchi, J.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

Sakamoto, T.

K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 164–165.

Sasaki, T.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
[CrossRef]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ3.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber realizing space-division multiplexed ultra-long-haul transmission,” in CLEO: Science and Innovations, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper CTh4G.

Sasaki, Y.

Sasaoka, E.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
[CrossRef]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber realizing space-division multiplexed ultra-long-haul transmission,” in CLEO: Science and Innovations, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper CTh4G.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ3.

Shimakawa, O.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
[CrossRef]

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ3.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber realizing space-division multiplexed ultra-long-haul transmission,” in CLEO: Science and Innovations, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper CTh4G.

Snyder, A. W.

A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
[CrossRef]

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

Sugisaki, R.

K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugisaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ1.

Sugizaki, R.

K. Imamura, K. Mukasa, and R. Sugizaki, “Trench assisted multi-core fiber with large Aeff over 100  μm2 and low attenuation loss,” in European Conference and Exposition on Optical Communications, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper Mo.1.LeCervin.

Takenaga, K.

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multicore fibers,” IEEE Photon. Technol. Lett. 24, 1898–1901 (2012).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19, B543–B550 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.

K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Characterisation of MC Fibers: New Techniques and Challenges,” in Optical Fiber Communication Conference, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D.5.

Tam, H.-Y.

Tanigawa, S.

K. Takenaga, Y. Arakawa, Y. Sasaki, S. Tanigawa, S. Matsuo, K. Saitoh, and M. Koshiba, “A large effective area multi-core fiber with an optimized cladding thickness,” Opt. Express 19, B543–B550 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.

Taru, T.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber,” Opt. Express 19, 16576–16592 (2011).
[CrossRef]

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber realizing space-division multiplexed ultra-long-haul transmission,” in CLEO: Science and Innovations, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper CTh4G.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ3.

Tomita, S.

K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 164–165.

Tsuchida, Y.

K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugisaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ1.

Wada, N.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

Watanabe, M.

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

IEEE J. Quantum Electron. (1)

H. A. Haus and L. Molter-Orr, “Coupled multiple waveguide systems,” IEEE J. Quantum Electron. 19, 840–844 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Saitoh, M. Koshiba, K. Takenaga, and S. Matsuo, “Crosstalk and core density in uncoupled multicore fibers,” IEEE Photon. Technol. Lett. 24, 1898–1901 (2012).
[CrossRef]

IEICE Electron. Express (1)

M. Koshiba, K. Saitoh, and Y. Kokubun, “Heterogeneous multi-core fibers: proposal and design principle,” IEICE Electron. Express 6, 98–103 (2009).
[CrossRef]

IEICE Trans. Commun. (1)

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “An investigation on crosstalk in multi-core fibers by introducing random fluctuation along longitudinal direction,” IEICE Trans. Commun. E94-B, 409–416 (2011).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Other (13)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

K. Okamoto, Fundamentals of Optical Waveguides (Elsevier, 2006).

J. Sakaguchi, Y. Awaji, N. Wada, T. Hayashi, T. Nagashima, T. Kobayashi, and M. Watanabe, “Propagation characteristics of seven-core fiber for spatial and wavelength division multiplexed 10-Gbit/s channels,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ2.

K. Imamura, K. Mukasa, and R. Sugizaki, “Trench assisted multi-core fiber with large Aeff over 100  μm2 and low attenuation loss,” in European Conference and Exposition on Optical Communications, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper Mo.1.LeCervin.

K. Takenaga, S. Matsuo, K. Saitoh, and M. Koshiba, “Characterisation of MC Fibers: New Techniques and Challenges,” in Optical Fiber Communication Conference, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper OTu1D.5.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Ultra-low-crosstalk multi-core fiber realizing space-division multiplexed ultra-long-haul transmission,” in CLEO: Science and Innovations, 2012OSA Technical Digest Series (Optical Society of America, 2012), paper CTh4G.

T. Hayashi, T. Taru, O. Shimakawa, T. Sasaki, and E. Sasaoka, “Low-crosstalk and low-loss multi-core fiber utilizing fiber bend,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ3.

J. Sakaguchi, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, T. Hayashi, T. Taru, T. Kobayashi, and M. Watanabe, “109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8 km homogeneous multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB6.

M. Koshiba, “Recent progress in multi-core fibers for ultra-large-capacity transmission,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 38–39.

K. Mukasa, K. Imamura, Y. Tsuchida, and R. Sugisaki, “Multi-core fibers for large capacity SDM,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ1.

K. Takenaga, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by quasi-homogeneous solid multi-core fiber,” in Optical Fiber Communication Conference, 2010OSA Technical Digest Series (Optical Society of America, 2010), paper OWK7.

K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh, and M. Koshiba, “Reduction of crosstalk by trench-assisted multi-core fiber,” in Optical Fiber Communication Conference, 2011OSA Technical Digest Series (Optical Society of America, 2011), paper OWJ4.

K. Saitoh, T. Matsui, T. Sakamoto, M. Koshiba, and S. Tomita, “Multi-core hole-assisted fibers for high core density space division multiplexing,” in Proceedings of IEEE Conference on 15th OptoElectronics and Communications Conference (IEEE, 2010), pp. 164–165.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Homogeneous seven-core MCF structure.

Fig. 2.
Fig. 2.

Propagation dynamics of a homogeneous seven-core MCF for the case of light launching into core 1.

Fig. 3.
Fig. 3.

Propagation dynamics of a homogeneous seven-core MCF for the case of light launching into core 2.

Fig. 4.
Fig. 4.

Relationship between Cmn and the structural parameters: (a) core-to-core pitch d1, (b) core radius an, and (c) refractive index difference Δ.

Fig. 5.
Fig. 5.

Difference of the coupling length LC1 between the simplified equation and the complete equation as a function of the core-to-core pitch d1.

Fig. 6.
Fig. 6.

Designed refractive index profile of each TA-MCF core.

Fig. 7.
Fig. 7.

Relationship between Aeff/Cmn and the trench parameters: (a) trench width ratio c/a, (b) refractive index difference Δtrench, and (c), (d) trench separation ratio b/a.

Fig. 8.
Fig. 8.

Relationship between the cutoff wavelength λC and (a) the effective area Aeff and (b) the coupling coefficient C12.

Fig. 9.
Fig. 9.

Dispersion and dispersion slope characteristics of different fibers.

Fig. 10.
Fig. 10.

Confinement loss of fundamental mode for core 3 of TA-MCF.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

dA(z)dz=CA(z).
cmn={jCmnexp[j(βmβn)z]mn,jMmm=n.
Cmn=ωε0Sn(ncon2ncl2)Em*·Endxdy2(EmxHmy*EmyHmx*)dxdy·(EnxHny*EnyHnx*)dxdy,
Mm=ωε0Sn(ncon2ncl2)Em*·Emdxdy2(EmxHmy*EmyHmx*)dxdy.
C=j[M1C12C12C12C12C12C12C12M1C12C24C25C24C12C12C12M1C12C24C25C24C12C24C12M1C12C24C25C12C25C24C12M1C12C24C12C24C25C24C12M1C12C12C12C24C25C24C12M1].
A1(z)=[cos(Cz2)+j(2C12+2C24+C25C)sin(Cz2)]exp[j(M1+C12+C24+C252)z]
An(z)=2jC12Csin(Cz2)exp[j(M1+C12+C24+C252)z]n1.
C=28C122+8C12C24+4C12C25+4C242+4C24C25+C252.
P1(z)=|A1(z)|2=(2C12+2C24+C25C)2+24C122C2cos2(Cz2)
Pn(z)=|An(z)|2=4C122C2sin2(Cz2)n1,
LC1=πC,
P1(LC1)=|A1(LC1)|2=(2C12+2C24+C25C)2.
Pn(LC1)=|An(LC1)|2=4C122C2n1.
A1(z)=2jC12Csin(Cz2)exp[j(M1+C12+C24+C252)z],
A2(z)=23cos[(C12C25)z]exp[j(C24M1)z]+16exp[j(2C12+C25M12C)24z]+16[cos(Cz2)j(2C12+2C24+C25C)sin(Cz2)]exp[j(M1+C12+C24+C252)z],
A3(z)=A7(z)=j3sin[(C12C25)z]exp[j(C24M1)z]16exp[j(2C12+C25M12C)24z]+16[cos(Cz2)j(2C12+2C24+C25C)sin(Cz2)]exp[j(M1+C12+C24+C252)z],
A4(z)=A6(z)=13cos[(C12C25)z]exp[j(C24M1)z]+16exp[j(2C12+C25M12C)24z]+16[cos(Cz2)j(2C12+2C24+C25C)sin(Cz2)]exp[j(M1+C12+C24+C252)z],
A5(z)=2j3sin[(C12C25)z]exp[j(C24M1)z]16exp[j(2C12+C25M12C)24z]+16[cos(Cz2)j(2C12+2C24+C25C)sin(Cz2)]exp[j(M1+C12+C24+C252)z].
dP2(z)dz|z=LC2=d|A2(z)|2dz|z=LC2=0.
LC1=π27C12.

Metrics