Abstract

The fabrication of flexible low-loss, thin-film, foil-based polymer waveguides with grating couplers employing a high-volume industrial roll-to-roll process is demonstrated. The embossed waveguides feature propagation losses of less than 1dB/cm (633 nm, TE polarization), bending losses of 0.40.8dB/360° for bending radii as small as 2 mm, and grating coupling efficiencies of up to 25%. In addition, the waveguides possess a thermo-optic coefficient of 1.58×1041/°C. The fabricated waveguides are promising candidates for short-distance data communication as well as for sensing applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Waldhäusl, B. Schnabel, P. Danneberg, E.-B. Kley, A. Bräuer, and W. Karthe, “Efficient coupling into polymer waveguides by gratings,” Appl. Opt. 36, 9383–9390 (1997).
    [CrossRef]
  2. C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
    [CrossRef]
  3. J. T. Kim, C. G. Choi, and H. K. Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI J. 27, 122–125 (2005).
    [CrossRef]
  4. C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004).
    [CrossRef]
  5. J. J. Yang, A. S. Flores, and M. R. Wang, “Array waveguide evanescent ribbon coupler for card-to-backplane optical interconnects,” Opt. Lett. 32, 14–16 (2007).
    [CrossRef]
  6. E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
    [CrossRef]
  7. S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electron. Lett. 42, 634–635 (2006).
    [CrossRef]
  8. J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
    [CrossRef]
  9. N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870–16879 (2007).
    [CrossRef]
  10. J. J. Dumond and H. Y. Low, “Recent developments and design challenges in continuous roller micro and nanoimprinting,” J. Vac. Sci. Technol. B 30, 010801 (2012).
    [CrossRef]
  11. H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010).
    [CrossRef]
  12. M.-W. Wang and C.-C. Tseng, “Analysis and fabrication of a prism film with roll-to-roll fabrication process,” Opt. Express 17, 4718–4725 (2009).
    [CrossRef]
  13. M. B. Chan-Park and W. K. Neo, “Ultraviolet embossing for patterning high aspect ratio polymeric microstructures,” Microsys. Technol. 9, 501–506 (2003).
    [CrossRef]
  14. S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388–2391 (2007).
    [CrossRef]
  15. R. Bruck and R. Hainberger, “Efficient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index coating,” Appl. Opt. 49, 1972–1978 (2010).
    [CrossRef]
  16. R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
    [CrossRef]
  17. L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
    [CrossRef]
  18. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
    [CrossRef]
  19. S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3, 2304–2310 (2009).
    [CrossRef]
  20. M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
    [CrossRef]

2012 (3)

J. J. Dumond and H. Y. Low, “Recent developments and design challenges in continuous roller micro and nanoimprinting,” J. Vac. Sci. Technol. B 30, 010801 (2012).
[CrossRef]

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[CrossRef]

2010 (3)

H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010).
[CrossRef]

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

R. Bruck and R. Hainberger, “Efficient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index coating,” Appl. Opt. 49, 1972–1978 (2010).
[CrossRef]

2009 (3)

M.-W. Wang and C.-C. Tseng, “Analysis and fabrication of a prism film with roll-to-roll fabrication process,” Opt. Express 17, 4718–4725 (2009).
[CrossRef]

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[CrossRef]

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3, 2304–2310 (2009).
[CrossRef]

2008 (1)

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

2007 (4)

J. J. Yang, A. S. Flores, and M. R. Wang, “Array waveguide evanescent ribbon coupler for card-to-backplane optical interconnects,” Opt. Lett. 32, 14–16 (2007).
[CrossRef]

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870–16879 (2007).
[CrossRef]

J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
[CrossRef]

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388–2391 (2007).
[CrossRef]

2006 (1)

S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electron. Lett. 42, 634–635 (2006).
[CrossRef]

2005 (1)

J. T. Kim, C. G. Choi, and H. K. Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI J. 27, 122–125 (2005).
[CrossRef]

2004 (1)

2003 (2)

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

M. B. Chan-Park and W. K. Neo, “Ultraviolet embossing for patterning high aspect ratio polymeric microstructures,” Microsys. Technol. 9, 501–506 (2003).
[CrossRef]

1997 (1)

Ahn, S. H.

H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010).
[CrossRef]

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3, 2304–2310 (2009).
[CrossRef]

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388–2391 (2007).
[CrossRef]

Ahn, S.-H.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Baets, R.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Blanc, D.

Bosman, E.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

Bräuer, A.

Bruck, R.

R. Bruck and R. Hainberger, “Efficient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index coating,” Appl. Opt. 49, 1972–1978 (2010).
[CrossRef]

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[CrossRef]

Chan-Park, M. B.

M. B. Chan-Park and W. K. Neo, “Ultraviolet embossing for patterning high aspect ratio polymeric microstructures,” Microsys. Technol. 9, 501–506 (2003).
[CrossRef]

Charlton, M. D. B.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[CrossRef]

Chen, R.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[CrossRef]

Chen, R. T.

Choi, C.

Choi, C. G.

J. T. Kim, C. G. Choi, and H. K. Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI J. 27, 122–125 (2005).
[CrossRef]

Choi, C. H.

J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
[CrossRef]

Choi, C.-G.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Choi, J.

Danneberg, P.

Destouches, N.

Dumond, J. J.

J. J. Dumond and H. Y. Low, “Recent developments and design challenges in continuous roller micro and nanoimprinting,” J. Vac. Sci. Technol. B 30, 010801 (2012).
[CrossRef]

Flores, A. S.

Franc, J.

Guo, L. J.

H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010).
[CrossRef]

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3, 2304–2310 (2009).
[CrossRef]

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388–2391 (2007).
[CrossRef]

Haas, D.

Hainberger, R.

R. Bruck and R. Hainberger, “Efficient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index coating,” Appl. Opt. 49, 1972–1978 (2010).
[CrossRef]

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[CrossRef]

Han, S.-P.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Han, X.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Hendrickx, N.

Jeong, M.-Y.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Jian, X.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Kang, M.-G.

H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010).
[CrossRef]

Karthe, W.

Kim, B. C.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Kim, J. T.

J. T. Kim, C. G. Choi, and H. K. Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI J. 27, 122–125 (2005).
[CrossRef]

Kim, J.-S.

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388–2391 (2007).
[CrossRef]

Kley, E.-B.

Kopetz, S.

S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electron. Lett. 42, 634–635 (2006).
[CrossRef]

Lee, E.-H.

J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
[CrossRef]

Lee, S. G.

J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
[CrossRef]

Li, Y.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Lin, L.

Liu, Y.

Low, H. Y.

J. J. Dumond and H. Y. Low, “Recent developments and design challenges in continuous roller micro and nanoimprinting,” J. Vac. Sci. Technol. B 30, 010801 (2012).
[CrossRef]

Magera, J.

Missinne, J.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

Morthier, G.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Neo, W. K.

M. B. Chan-Park and W. K. Neo, “Ultraviolet embossing for patterning high aspect ratio polymeric microstructures,” Microsys. Technol. 9, 501–506 (2003).
[CrossRef]

Neyer, A.

S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electron. Lett. 42, 634–635 (2006).
[CrossRef]

O, B.-H.

J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
[CrossRef]

Oo, S.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[CrossRef]

Park, H. J.

H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010).
[CrossRef]

Parriaux, O.

Pearce, S. J.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[CrossRef]

Pollard, M. E.

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[CrossRef]

Porcel, M. G.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Rabe, E.

S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electron. Lett. 42, 634–635 (2006).
[CrossRef]

Schnabel, B.

Sung, H. K.

J. T. Kim, C. G. Choi, and H. K. Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI J. 27, 122–125 (2005).
[CrossRef]

Tonchev, S.

Tseng, C.-C.

Van Daele, P.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

N. Destouches, D. Blanc, J. Franc, S. Tonchev, N. Hendrickx, P. Van Daele, and O. Parriaux, “Efficient and tolerant resonant grating coupler for multimode optical interconnections,” Opt. Express 15, 16870–16879 (2007).
[CrossRef]

Van Hoe, B.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

Van Steenberge, G.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

Vanfleteren, J.

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

Vermeulen, D.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Waldhäusl, R.

Wang, J.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

Wang, L.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

C. Choi, L. Lin, Y. Liu, J. Choi, L. Wang, D. Haas, J. Magera, and R. T. Chen, “Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects,” J. Lightwave Technol. 22, 2168–2176 (2004).
[CrossRef]

Wang, M. R.

Wang, M.-W.

Yang, J. J.

Yang, J. S.

J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
[CrossRef]

Zhao, M.

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

ACS Nano (1)

S. H. Ahn and L. J. Guo, “Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting,” ACS Nano 3, 2304–2310 (2009).
[CrossRef]

Adv. Mater. (2)

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. 20, 2044–2049 (2008).
[CrossRef]

H. J. Park, M.-G. Kang, S. H. Ahn, and L. J. Guo, “A facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performance,” Adv. Mater. 22, E247–E253 (2010).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

S. Kopetz, E. Rabe, and A. Neyer, “High-temperature stable flexible polymer waveguide laminates,” Electron. Lett. 42, 634–635 (2006).
[CrossRef]

ETRI J. (1)

J. T. Kim, C. G. Choi, and H. K. Sung, “Polymer planar-lightwave-circuit-type variable optical attenuator fabricated by hot embossing process,” ETRI J. 27, 122–125 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

E. Bosman, G. Van Steenberge, B. Van Hoe, J. Missinne, J. Vanfleteren, and P. Van Daele, “Highly reliable flexible active optical links,” IEEE Photon. Technol. Lett. 22, 287–289 (2010).
[CrossRef]

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1 16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

J. Appl. Phys. (1)

L. Wang, Y. Li, M. G. Porcel, D. Vermeulen, X. Han, J. Wang, X. Jian, R. Baets, M. Zhao, and G. Morthier, “A polymer-based surface grating coupler with an embedded Si3N4 layer,” J. Appl. Phys. 111, 114507 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (2)

S. H. Ahn, J.-S. Kim, and L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” J. Vac. Sci. Technol. B 25, 2388–2391 (2007).
[CrossRef]

J. J. Dumond and H. Y. Low, “Recent developments and design challenges in continuous roller micro and nanoimprinting,” J. Vac. Sci. Technol. B 30, 010801 (2012).
[CrossRef]

Microsys. Technol. (1)

M. B. Chan-Park and W. K. Neo, “Ultraviolet embossing for patterning high aspect ratio polymeric microstructures,” Microsys. Technol. 9, 501–506 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (3)

M. E. Pollard, S. J. Pearce, R. Chen, S. Oo, and M. D. B. Charlton, “Polymer waveguide grating couplers for low-cost nanoimprinted integrated optics,” Proc. SPIE 8264, 826418 (2012).
[CrossRef]

R. Bruck and R. Hainberger, “Efficient small grating couplers for low-index difference waveguide systems,” Proc. SPIE 7218, 72180A (2009).
[CrossRef]

J. S. Yang, C. H. Choi, B.-H. O, S. G. Lee, and E.-H. Lee, “Design and characterization of an out-of-plane polymer waveguide grating coupler,” Proc. SPIE 6476, 647611 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Roll-to-roll fabrication process of foil waveguides consisting of dispensing, embossing and curing steps, as well as thermal evaporation of an inorganic high index layer.

Fig. 2.
Fig. 2.

Schematic of fabricated foil waveguides.

Fig. 3.
Fig. 3.

Characterization of the embossed grating structure: (a) AFM scan of the embossed low index lower cladding layer showing smooth surfaces, defect free replication, and a modulation depth close to the design value of 200 nm and (b) TEM side view of the grating revealing a homogeneous deposition of the inorganic layer and perfect filling of the embossed structure with the high index waveguiding layer.

Fig. 4.
Fig. 4.

Insertion losses as function of propagation length of the fundamental waveguide mode in foil waveguides. Measured propagation losses are smaller than 1dB/cm. Grating coupler losses amount to 12–14 dB, i.e., 6–7 dB losses per grating coupler or a maximum grating efficiency of 25%.

Fig. 5.
Fig. 5.

Experimental setup for evaluation of bending losses.

Fig. 6.
Fig. 6.

Evaluation of the thermo-optic coefficient of the waveguide structure by monitoring the optimum incoupling angle of the input grating coupler for different temperatures. The measured temperature dependence of the angle of incidence of 0.0123°/°C translates into a thermo-optic coefficient of 1.58×1041/°C.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2πλ0neff=2πλ0sinα+2πΛ,

Metrics